

EEL 4930/5934: Autonomous Robots (Spring 2023)

 Fundamental matrix: 	Essentia matr
$\circ \mathbf{F} = \mathbf{K}_{R}^{-T} \mathbf{E} \mathbf{K}_{L}^{-1} \mathbf{\Xi} \mathbf{K}^{-T} \mathbf{E} \mathbf{K}^{-1}$	$\circ \mathbf{E} = \mathbf{K}^{T} \mathbf{F} \mathbf{K} =$
 u in the left image represent a line: 	 How to get ca
Fu=0 in right image	\blacksquare SVD: E
 It is the epipolar line L = Fu The right epipole is also on this line Therefore e^T_R (Fu) = 0 	Then, $R \in t = t$
• Similarly, v in the right image	Where W =
• Left epipole satisfies e^{T} ($F^{T}v$) = 0	Get four so

xc, yc = (x+w/2), (y+h/2)
$x0, y0 = im_w/2, im_h/2$
offset_yaw = (xc-x0)/im_w
yaw_angle ∝ offset_yaw
$offset_pitch = (yc-y0)/im_h$
pitch_angle \propto offset_pitch
velocity forward \propto distance

EEL 4930/5934: Autonomous Robots (Spring 2023)

State Estimation & Filtering	(X_{t-1})	EKF
• x_t = State • z_t = Measurement • u_t = Control input • $x = argmax P(x z)$	u_t u_{t+1} z_{t+1}	State transition: $x_t = \mathbf{f}(x_t, u_t) + \epsilon_t$ Observation: $z_t = \mathbf{h}(x_t) + \delta_t$
KF	m	Duadiat Ctata: $f(x, y)$
State transition: $x_t = \mathbf{F}_t x_{t-1} + \mathbf{B}_t u_t + \epsilon_t$ Observation: $z_t = \mathbf{H}_t x_t + \delta_t$		Predict State: $x_t = \mathbf{r}(x_t, u_t)$ Predict covariance: $\mathbf{F}_t = \nabla_x \mathbf{f}(x_t, u_t)$
Predict State: $x_t = \mathbf{F}_t x_{t-1} + \mathbf{B}_t u_t$ Predict covariance: $\mathbf{P}_t = \mathbf{F}_t \mathbf{P}_{t-1} \mathbf{F}_t^{T} + \mathbf{Q}_t$	7 Predict	$\mathbf{G}_{t} = \nabla_{\epsilon} \mathbf{f}(x_{t}, u_{t})$ $\mathbf{P}_{t} = \mathbf{F}_{t} \mathbf{P}_{t-1} \mathbf{F}_{t}^{T} + \mathbf{Q}_{t}$
Observation residual: $y_t = z_t - \mathbf{H}_t x_{t-1}$ Observation covariance: $\mathbf{S}_t = \mathbf{H}_t \mathbf{P}_{t-1} \mathbf{H}_t^{T} + \mathbf{R}_t$ Kalman gain: $\mathbf{K}_t = \mathbf{P}_t \mathbf{H}_{t-1}^{T} \mathbf{S}_t^{-1}$ Update state: $x_t = x_t + \mathbf{K}_t y_t$ Update covariance: $\mathbf{P}_t = (\mathbf{I}_t - \mathbf{K}_t \mathbf{H}_t) \mathbf{P}_t$	Update C	Deservation residual: $y_t = z_t - h(x_t)$ Deservation covariance: $H_t = \nabla_x h(x_t)$ $S_t = H_t P_{t-1} H_t^T + R_t$ Kalman gain: $K_t = P_t H_{t-1}^T S_t^{-1}$ Update state: $x_t = x_t + K_t y_t$
		Update covariance: $\mathbf{P}_t = (\mathbf{I}_t - \mathbf{K}_t \mathbf{H}_t) \mathbf{P}_t$

Summary: EEL 4930/5934: Autonomous Robots Spring 2023

Department of ECE, University of Florida

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$

- **g(n)**: path cost from the start node to **n**
- h(n): cost of the cheapest path from n to the goal node
- Evaluate **n** for expansion based on: f(n) = g(n) + h(n)

⇒ Advanced algorithms

- Planning without a map Target-centric planners
- Active planners
- Imitation learning
- Learning to plan from
- demonstrations (LfDs)

0	1	2	3
8	9	10	11
16	17	18	19
24	25	26	34 34 27 68
32	33	34	35
40	41	42	43
48	49	50	51
56	57	58	59

RoboPI: Robot Perception & Intellgence Laboratory

- Probabilistic completeness
- More efficient than PRM if only a single query needed

