Department of ECE, University of Florida

Spatial Transformation

- Elementary rotations: X/Y/Z

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \quad R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Properties of a rotation matrix:

$-\operatorname{Det}(R)=1 \quad\left[\begin{array}{lll}\hat{x}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{Y}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Y}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A}\end{array}\right]$
- $\mathbf{R}^{\top}=R^{-1}$ and $R^{\top} R=I_{3 \times 3}$
- Homogeneous representation:
- ${ }^{A} P={ }_{B}^{A} R^{B} P+{ }^{A} P_{\text {Borg }}$
- ${ }^{A} P={ }_{B}^{A} T^{B} P$

- Pure translation: $\mathrm{R}=\mathrm{I}_{3 \times 3}$
- Pure rotation: ${ }^{A} P_{\text {Borg }}=03 \times 1$
- Compound transforms
- ${ }_{C}^{A} \mathbf{T}={ }_{B}^{A} \boldsymbol{T} \cdot{ }_{C}^{B} \mathbf{T}$

- Inverse transforms
- ${ }_{A}^{B} \mathbf{T} \equiv\left\{{ }_{A}^{B} R,{ }^{B} P_{\text {Aorg }}\right\}={ }_{B}^{A} \mathbf{T}^{-}$
- ${ }_{A}^{B} \mathbf{T}=\left[\begin{array}{c:c}{ }^{A} R^{\top} & -{ }_{B}^{A} R^{T} \text {. }{ }^{A} P_{\text {Borg }} \\ \hdashline 0 & 0\end{array}\right]$
- $\mathbf{R}(X-Y-Z)$ fixed angle
${ }_{B}^{A} R_{X Y Z}(\gamma, \beta, \alpha)=R_{Z}(\alpha) \cdot R_{Y}(\beta) \cdot R_{X}(\gamma)$
$=\left[\begin{array}{ccc}c \alpha c \beta & c \alpha s \beta s \gamma-s \alpha c \gamma & c \alpha s \beta c \gamma+s \alpha s \gamma \\ s \alpha c \beta & s \alpha s \beta s \gamma+c \alpha c \gamma & s \alpha s \beta c \gamma-c \alpha s \gamma \\ -s \beta & c \beta s \gamma & c \beta c \gamma\end{array}\right]$
- General solution: k

- Rodrigues' rotation formula
$v_{\text {rot }}=v \cos \theta+(1-\cos \theta)(k \cdot v) k+(k \times v) \sin \theta$

Quaternions

- Unit quaternion:

$$
R(k, \theta)=\left[\begin{array}{ccc}
k_{x}^{2}(1-c \theta)+c \theta & k_{x} k_{k}(1-c \theta)-k_{z} s \theta & k_{x} k_{z}(1-c \theta)+k_{y} s \theta \\
k_{x} k_{y}(1-c \theta)+k_{z} s \theta & k_{y}^{2}(1-c \theta)+c \theta & k_{y} k_{z}(1-c \theta)-k_{x} s \theta \\
k_{x} k_{z}(1-c \theta)-k_{y} s \theta & k_{y} k_{z}(1-c \theta)+k_{x} s \theta & k_{z}^{2}(1-c \theta)+c \theta
\end{array}\right]
$$

n:

- $\mathbf{q}=\left[\begin{array}{l}\bar{q} \\ q_{4}\end{array}\right]=\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3} \\ q_{4}\end{array}\right]$
- $\mathbf{q}=q_{i} i+q_{2} j+q_{3} k+q_{k}$
- $i^{2}=j^{2}=k^{2}=i j k=-1$
- Rotation around a unit quaternion:
- $\mathbf{q}=\left[\begin{array}{c}\bar{k} s(\theta / 2) \\ c(\theta / 2)\end{array}\right]=\left[\begin{array}{l}k_{x} s(\theta / 2) \\ k_{y}, \\ k s(\theta / 2) \\ k s(\theta / 2)\end{array}\right]$
$\left[\begin{array}{l}k_{2}(\theta / 2) \\ k_{z} s(\theta / 2)\end{array}|; \quad| q|=|k|=1\right.$
- $\mathbf{q}^{-1}=\frac{\mathbf{q}^{*}}{|q|}=\mathbf{q}^{*}=-q_{1} i-q_{2} j-q_{3} k+q_{4}=\left[\begin{array}{c}-q_{1} \\ -q_{2} \\ -q_{3} \\ q_{4}\end{array}\right]$

$\mathrm{T} 1=\{\mathrm{R} 1, \mathrm{t} 1\}$ $T 2=\{R 2, t 2\}$ $T 2=\{R 2, t 2\}$
$T(\mu)=?$

Quaternion SLERP: Spherical linear interpolation

t_{-}lerp $=\mu * t 1+(1-\mu) * t 2$ q1 $=$ quaternion_from_rotation(R1) q2 = quaternion_from_rotation(R2) q_slerp $=$ quaternion_slerp(q1, q2, μ) $T \bar{\mu}=\left\{R_{-}\right.$slerp, t_{-}lerp $\}$
$R(k, \theta) \mathbf{v}=\mathbf{q}\left[\begin{array}{l}\mathbf{v} \\ 0\end{array}\right] \mathbf{q}^{*}=\mathbf{q}\left[\begin{array}{l}\mathbf{v} \\ 0\end{array}\right] \mathbf{q}^{-1}=\mathbf{q}\left[\begin{array}{c}v_{x} \\ v_{y} \\ v_{z} \\ 0\end{array}\right] \mathbf{q}^{*}$
$R(k, \theta)=\left[\begin{array}{ccc}k_{x}^{2}(1-c \theta)+c \theta & k_{x} k_{y}(1-c \theta)-k_{z} s \theta & k_{x} k_{z}(1-c \theta)+k_{y} s \theta \\ k_{x} k_{y}(1-c \theta)+k_{z} s \theta & k_{y}^{2}(1-c \theta)+c \theta & k_{y} k_{z}(1-c \theta)-k_{x} s \theta \\ k_{x}(1)\end{array}\right]$
$R(k, \theta)=\left[\begin{array}{ccc}k_{x}(1-c \theta)+c \theta & k_{x} k_{y}(1-c \theta)-k_{z} s \theta & k_{x} k_{z}(1-c \theta)+k_{y} s \theta \\ k_{x} k_{y}(1-c \theta)+k_{z} s \theta & k_{y}^{2}(1-c \theta)+c \theta & k_{y} k_{z}(1-c \theta)-k_{x} s \theta \\ k_{x} k_{z}(1-c \theta)-k_{y} s \theta & k_{y} k_{z}(1-c \theta)+k_{x} s \theta & k_{z}^{2}(1-c \theta)+c \theta\end{array}\right]$
$\begin{aligned} & {\left[\begin{array}{lll}1-2 q_{2}^{2}-2 q_{3}^{2} & 2\left(q_{1} q_{2}--_{3} q_{4}\right) & 2\left(q_{1} q_{3}+q_{2} q_{4}\right) \\ 2\left(q_{1} q_{2}+q_{3} q_{4}\right) & 1-2 q_{1}^{2}-2 q_{3}^{2} & 2\left(q_{2} q_{3}-q_{1} q_{4}\right)\end{array}\right] }\end{aligned}$

Forward Kinematics: Manipulators

- DH notation: four parameters
- Link twist: $\quad \alpha_{i-1} \equiv \operatorname{angle}\left(Z_{i-1}, Z_{i}\right) x_{i-1}$
- Link length: $a_{i-1} \equiv \operatorname{distance}\left(Z_{i-1}, Z_{i}\right) x_{i-1}$
- Link offset: $\quad d_{i} \equiv \operatorname{distance}\left(X_{i-1}, X_{i}\right)_{z_{i}}$
- Joint angle: $\theta_{i} \equiv \operatorname{angle}\left(X_{i-1}, X_{i}\right) z_{i}$
- Transformation: from $\{i\}$ to $\{i-1\}$
${ }^{-1} \mathbf{T}=$ Rotate $_{\mathrm{X}_{i-1}}\left(\alpha_{i-1}\right) \times \operatorname{Translate}_{x_{i-1}}\left(a_{i-1}\right) \times \operatorname{Rot}_{z_{i}}\left(\theta_{i}\right) \times \operatorname{Translate}_{z_{i}}\left(d_{i}\right)$

$$
=\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & a_{i-1} \\
C \alpha_{i-1} \cdot S \theta_{i} & C \alpha_{i-1} \cdot C \theta_{i} & -S \alpha_{i-1} & -d_{i} \cdot S \alpha_{i-1} \\
S \alpha_{i-1} \cdot S \theta_{i} & S \alpha_{i-1} \cdot C \theta_{i} & C \alpha_{i-1} & d_{i} \cdot C \alpha_{i-1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Example

Inverse Kinematics: Manipulators

- Geometric solution: example \#1

- Geometric solution: example \#2

$x=L_{1} c_{1}+L_{2} G_{12}=L_{1} c_{1}+L_{2} c_{1} C_{2}-L_{2} s_{1} s_{2}=\left(L_{1}+L_{2} c_{2}\right) c_{1}-\left(L_{2} s_{2}\right) s_{1}$
$y=L_{1} s_{1}+L_{2} s_{12}=L_{1} s_{1}+s_{2} s_{1} C_{2}+L_{2} c_{1} s_{2}=\left(L_{1}+L_{2}\right)_{2} s_{1}+\left(L_{2} s_{2}\right)$ $y=L_{1} s_{1}+L_{2} s_{12}=L_{1} s_{1}+L_{2} s_{1} C_{2}+L_{2} C_{1} s_{2}=\left(L_{1}+L_{2} C_{2}\right) s_{1}+\left(L_{2} s_{2}\right) c_{1}$ $x=k_{1} c_{1}-k_{2} s_{1} k_{1}=r \cos \gamma \quad \frac{x}{r}=c \gamma c_{1}-s \gamma s_{1}=\cos \left(\gamma+\theta_{1}\right) \quad x_{3}$

Summary: EEL 4930/5934: Autonomous Robots
Spring 2023
Department of ECE, University of Florida

Visual Odometry (VO) and Visual SLAM (VSLAM) Feedback Control: PID
VO: pose recovery from motion of a calibrated camera VSLAM: VO + place recognition (loop closure) + global optimization for consistency
SfM: Recovers scene structure from unordered cameras at different viewpoints (often uncalibrated cameras)
\Rightarrow VSLAM $=$ VO + loop closure + global optimization

- VO provides only local/relative estimates, and the path is refined online with windowed optimization
- VSLAM provides a global and consistent estimate
- The detection of loop closure reduces the drift in both the map and the trajectory estimates
- By performing Bundle Adjustment (BA)

Feedback Control: PID
(P): compensates for the error difference

- Proportional (P): compensates for the error difference - Integral (I): responds to the steady-state response

$$
\text { Need to tune } \boldsymbol{K}_{p}, \boldsymbol{K}_{\boldsymbol{j}} \boldsymbol{K}_{d} \text { experimentally }
$$

$$
u(t)=K_{p} e(t)+K_{i} \int_{0}^{t} e(\tau) d \tau+K_{d} \frac{d}{d t} e(t)
$$

\Rightarrow Map-based planners: trea search

- BFS: Search a tree, one level at a time - Complete (finds solution if there is one) Optimal if cost is increasing with path depth
- DFS: Search a tree, keep expanding one child at a time - Not complete if infinite depth; Not optimal
- Dijkstra: searches the single-source shortest path
- Optimal and complete, but not always fast
- Start node is assigned a distance of zero
- Other node's distance are set to infinity
- Compute $\mathbf{g}(\mathbf{n})$: path cost from the start node to \mathbf{n}
- A*: Uses heuristics to find the "best" node to expand - Optimal and complete
- $\mathbf{g}(\mathbf{n})$: path cost from the start node to \mathbf{n}
- $\mathbf{h (n)}$: cost of the cheapest path from \mathbf{n} to the goal node
- Evaluate \mathbf{n} for expansion based on: $\mathbf{f}(\mathbf{n})=\mathbf{g}(\mathbf{n})+\mathbf{h}(\mathbf{n})$

Path Planning Algorithms

\Rightarrow Map-based planners: sampling-based algorithms

- PRM: Probabilistic road map

Learning phase

- Sample n points in configuration space Cfree
- Connect random configurations using a local planner
- Query phase
- Connect start and goal configurations with the PRM
- Use the graph search to find the path
- Probabilistic completeness
- Efficient if we need multiple queries on the same graph
- RRT and RRT*: Rapidly-exploring Random Trees
- For each planning problem constructs a new roadmap - Aggressively probe and explore the configuration space by expanding incrementally
- Probabilistic completeness
- More efficient than PRM if only a single query needed
\Rightarrow Advanced algorithms
- Planning without a map
- Target-centric planners
- Active planners
- Imitation learning
- Learning to plan from demonstrations (LfDs)

