
● Homogeneous representation:
■

■
■

■ Pure translation: R = I3x3

■ Pure rotation: = 03x1

Summary: EEL 4930/5934: Autonomous Robots
Spring 2023

● Elementary rotations: X/Y/Z

EEL 4930/5934: Autonomous Robots (Spring 2023)

● DH notation: four parameters
■ Link twist:
■ Link length:
■ Link offset:
■ Joint angle:

Department of ECE, University of Florida

● Properties of a rotation matrix:
■

■
■

● Compound transforms
■

● Inverse transforms
■

■

● R(X-Y-Z) fixed angle

● General solution:

● Transformation: from {i} to {i-1}

● Unit quaternion:

■

■
■

● Geometric solution: example #2

Algebraic solution: Pieper robot

Spatial Transformation Forward Kinematics: Manipulators

{A}

{B}

{C}

P

● Rodrigues’ rotation formula

Quaternions Quaternion SLERP: Spherical linear interpolation

● Example

Inverse Kinematics: Manipulators
● Geometric solution: example #1

⇒ Finally, solve for
 ϴ4 , ϴ5 , ϴ6

⇒ Solve for ϴ3
⇒ With ϴ3 solve for ϴ2
⇒ Then solve for ϴ1

● Rotation around a unit quaternion:

■

■

Q
ua

te
rn

io
n

Pr
op

er
tie

s

t_lerp = μ * t1 + (1-μ) * t2
q1 = quaternion_from_rotation(R1)
q2 = quaternion_from_rotation(R2)
q_slerp = quaternion_slerp(q1, q2, μ)
R_slerp = rotation_from_quaternion(q)
Tμ = {R_slerp, t_lerp}

T1={R1,t1}
T2={R2,t2}

T(μ) = ?

Say:

ϴ1 = 𝜋/3

ϴ3 = 𝜋/6

d2 = 0.5
L2 = 1

○ 2D feature detection in images: SIFT, ORB, FAST, etc
○ Feature matching across viewpoints

● KNN + ratio test
○ Estimating F from matched features: (u, v) pairs

● 8-point algorithm + RANSAC
○ Estimating E from F: E = KT F K
○ Finding R, t from E: triangulation + Cheriality condition
○ Finding projection matrices: PL, PR

○ Triangulating all 3D points
○ PnP and nonlinear refinement
○ Bundle Adjustment (BA)

● Essentia matrix:

○
○ How to get camera pose (R, t) from E

■ SVD:

■ Then,

■ Where

■ Get four solutions:

● Fundamental matrix:

○
○ u in the left image represent a line:

Fu=0 in right image
■ It is the epipolar line L = Fu

○ The right epipole is also on this line
■ Therefore e (Fu) = 0

○ Similarly, v in the right image
■ Represent a line: F v = 0 in left image
■ Left epipole satisfies e (F v) = 0

● SLAM: Simultaneous Localization and Mapping
■ Given:

● The robots controls

● The measurements observations

■ Wanted:
● The environment map
● The robot pose

● Full SLAM vs Online SLAM
○ Full SLAM estimates the entire state

○ Online SLAM estimates the current state

Summary: EEL 4930/5934: Autonomous Robots
Spring 2023

EEL 4930/5934: Autonomous Robots (Spring 2023)

● DOF: degrees of freedom

Department of ECE, University of Florida
● Perspective transformation: homography

Camera calibration

● Epipolar geometry:
○ Camera centers: OL, OR

○ Baseline: line connecting the optical centers B=OLOR
○ Epipoles: eL, eR

■ Intersection of image planes with the baseline
○ Epipolar plane: OL– OR– X

■ Plane connecting the optical centers and 3D point
○ Epipolar lines: lines defined by the intersection

 of epipolar plane and image planes

● Motion gaits
■ Sliding gaits, crawling gaits, swimming gaits

■ Legged (walking) gaits, wheel (rolling) gaits

xc, yc = (x+w/2), (y+h/2)

x0, y0 = im_w/2, im_h/2

offset_yaw = (xc-x0)/im_w

yaw_angle ∝ offset_yaw

offset_pitch = (yc-y0)/im_h

pitch_angle ∝ offset_pitch

velocity_forward ∝ distance

Visual perception

Structure from motion (SfM)

Robot locomotion

● Projection matrix: P

■

■

■

Robot localization: SLAM

(x, y)

h

w

Person following process by UGVs (TurtleBots)

Yaw-Pitch controller for diver following by AUVs

○ With 3D bounding box (BBox):
● Given a bounding box (x, y, w, h)
● Get the center (xc, yc) of BBox
● Calculate offset_x from center w.r.2 the image width
● Calculate angular offset theta
● Rotate with angular.z
● Get the depth value d[xc, yc]
● Move with linear.x (maintain a safe distance d0)

○ With point clouds
● Get the center of the point cloud

■ Closest point cloud usually works
● Human leg detectors (by laser scanners)
● Person detectors (by ML/DL methods)

● Stereo geometry
○ Two cameras offset by a ‘baseline’
○ Relative depth estimation: disparity

● Intrinsic matrix: K
■ f = focal length
■ px, py = imw/2, imh/2
■ mx, my = CCD to image scale
■ s = skew

Image plane

Pinhole

3D point

CCD sensor

p’ = H p

Panorama from pure rotation

vTFu = 0
F = K-T E K-1 ⇒ E = KT F K = t x R

SfM pipeline: 3D structures from 2D image sequences

Homography transformation
● Pure camera rotation
● Same planar surface viewed

by two cameras

Summary: EEL 4930/5934: Autonomous Robots
Spring 2023

EEL 4930/5934: Autonomous Robots (Spring 2023)

Department of ECE, University of Florida

⇒ Map-based planners: trea search
● BFS: Search a tree, one level at a time

○ Complete (finds solution if there is one)
○ Optimal if cost is increasing with path depth

● DFS: Search a tree, keep expanding one child at a time
○ Not complete if infinite depth; Not optimal

● Dijkstra: searches the single-source shortest path
○ Optimal and complete, but not always fast

■ Start node is assigned a distance of zero
■ Other node’s distance are set to infinity
■ Compute g(n): path cost from the start node to n

● A*: Uses heuristics to find the “best” node to expand
○ Optimal and complete

■ g(n): path cost from the start node to n
■ h(n): cost of the cheapest path from n to the goal node
■ Evaluate n for expansion based on: f(n) = g(n) + h(n)

Predict

Update

KF

EKF
● xt = State
● zt = Measurement
● ut = Control input

⇒ VIO = VO (pose estimates) + IMU (error correction)
● Uses VO to estimate camera pose from motion
● Inertial measurements from the IMU are used for error

corrections associated with rapid motion
● Backbone of VINS (Visual Inertial Navigation System)
● Uses synchronized camera and IMU sensory fusion to

estimate robot pose in real-time
⇒ Direct / indirect + Sparse / Dense / Semi-dense

● m = map
● t = time
x = argmax P (x | z)

u(t)

e(t)

State Estimation & Filtering

Feedback Control: PID
● Proportional (P): compensates for the error difference
● Derivative (D): reacts for the change of error (restricts oscillation)
● Integral (I): responds to the steady-state response

Need to tune Kp, Ki, Kd experimentally

VO: pose recovery from motion of a calibrated camera
VSLAM: VO + place recognition (loop closure) + global
 optimization for consistency
SfM: Recovers scene structure from unordered cameras at
 different viewpoints (often uncalibrated cameras)

Visual Odometry (VO) and Visual SLAM (VSLAM)

⇒ VSLAM = VO + loop closure + global optimization

● VO provides only local/relative estimates, and the path is
refined online with windowed optimization.

● VSLAM provides a global and consistent estimate
○ The detection of loop closure reduces the drift in both

the map and the trajectory estimates
○ By performing Bundle Adjustment (BA)

Sensory
Data

Loop
Closure

Visual
Odometry

(Front End)

Global
Optimization
(Back End)

3D
Reconstruc

tion
Path Planning Algorithms

⇒ Map-based planners: sampling-based algorithms
● PRM: Probabilistic road map

○ Learning phase
■ Sample n points in configuration space Cfree
■ Connect random configurations using a local planner

○ Query phase
■ Connect start and goal configurations with the PRM
■ Use the graph search to find the path

○ Probabilistic completeness
○ Efficient if we need multiple queries on the same graph

● RRT and RRT*: Rapidly-exploring Random Trees
○ For each planning problem constructs a new roadmap
○ Aggressively probe and explore the configuration space

by expanding incrementally
○ Probabilistic completeness
○ More efficient than PRM if only a single query needed

⇒ Advanced algorithms
● Planning without a map
● Target-centric planners
● Active planners
● Imitation learning
● Learning to plan from

demonstrations (LfDs)

Accelerometer Correction

CorrectionGyroscope

GNSS

Camera

Position

Velocity

Attitude

Estimation Algorithm

G

∫

∫

∫

GNSS KF
(Position)

V-SLAM
(Position)

Transformation
(Velocity)

Estimated Position
and Velocity

