
EEL 4930/5934: Autonomous Robots
HH1: Hands-on Homework #1 (Spring 2023)

Tasks Overview:
A. Prepare Workspace: ROS, Catkin, and Python-OpenCV Packages
B. Interface webcam / usb camera in ROS

i. Initiate camera and visualize image topics
ii. Subscribe to image topic and extract data: OpenCV-Bridge
iii. Perform image processing: detect face draw bounding boxes (in OpenCV)

C. Publish the output image (with face boxes) as a topic: visualize topics in rqt_image_view
D. Write a single launch file for the whole project, ie, that does the following

i. Starts the usb_cam node (for step B.i)
ii. Start the face_detector node (for step B.ii, B.iii, and C)
iii. Start the rqt_image_view node for visualization

Grading Breakdown

EEL 4930
● Part A: 25%
● Part B: 50% (20% + 20% + 10%)
● Part C: 25%
● Part D: extra! (not required, may get bonus points)

EEL 5934
● Part A: 20%
● Part B: 45% (15% + 20% + 10%)
● Part C: 20%
● Part D: 15%

References:
● Lecture 1-2 contents and ROS wiki
● Recommendations:

○ Use a linux laptop (virtual OS is fine) and its built-in camera
○ Alternatingly use a PC or Raspberry PI (3 or 4) or Jetson nano (use any USB camera)

Submission: [Through Canvas only; Due: Feb 7, 2023 by 11.55pm]
● A single zip file with no more than 10MB size

○ A readme.txt with your name, GatorID, ROS version, OS version, etc.
○ Your ROS package (only your new Catkin package, do not include anything else)
○ A PDF of step-by-step demo with screen-shots of terminal outputs

● Assignment more than 10 MB file size will get negative penalty (-10% to -50%)

Part A: Prepare Workspace: ROS, Catkin, and Python-OpenCV Packages
● Install Python and OpenCV libraries (if you do not have them already)

○ Get Python (3.8 or 3.9): sudo apt install python3
○ Verify the installation: python3 --version
○ Get OpenCV 3.2.x: sudo apt install python3-opencv
○ Verify the installation: python3 -c "import cv2; print(cv2.__version__)"

● Install ROS (if you do not have them already)
○ Installation: https://wiki.ros.org/ROS/Installation
○ Make sure to install the correct distribution for your platform (see Lecture 2 slides)
○ ROS Noetic

■ Primarily targeted at the Ubuntu 20.04 (Focal); should work with Raspberry Pi 4s
■ Follow the installation instruction and reference video

○ ROS Melodic:
■ Primarily targeted at the Ubuntu 18.04 (Bionic); should work with Raspberry Pi 3s
■ Follow the installation instruction

Autonomous Robots - EEL 4930/5934 (Spring 2023) By Md Jahidul Islam Page 1

https://wiki.ros.org/ROS/Installation
http://wiki.ros.org/noetic/Installation/Ubuntu
https://www.youtube.com/watch?v=Qk4vLFhvfbI&list=PLLSegLrePWgIbIrA4iehUQ-impvIXdd9Q&index=2
http://wiki.ros.org/melodic/Installation/Ubuntu

● Create and setup a Catkin workspace:
○ Follow the CreateWorkspace Tutorial and reference video
○ Practice a couple of sample projects (talker/listener, turtlesim, etc.)

Part B: Interface webcam / usb camera in ROS
● Install the usb_camera package; ie: sudo apt install ros-noetic-usb-cam
● If you are using external usb cameras

○ Plug the camera and check which usb bus is reading it (lsusb command)
● Initiate camera by running the usb_cam package (which will start the usb_cam node)

○ You can use both rosrun or roslaunch to do this
○ Check the image topics once the camera is initiated: rostopic list (se below)

○ You can visualize the image data using rqt_image_view (see below)

● Now create your own ROS package which will
○ Subscribe to the image topic of interest, ie, /usb_cam/image_raw
○ Convert the ROS image data to OpenCV image data

■ By using Open-CV bridge (see this tutorial)
■ CvBridge is a ROS library that provides an interface between ROS and OpenCV

Autonomous Robots - EEL 4930/5934 (Spring 2023) By Md Jahidul Islam Page 2

http://wiki.ros.org/ROS/Tutorials/catkin/CreateWorkspace
https://www.youtube.com/watch?v=8uxd9RBQvmQ&list=PLLSegLrePWgIbIrA4iehUQ-impvIXdd9Q&index=3
http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAndOpenCVImagesPython

Here is a sample piece of code, that does the following

● Initiates a ROS node named 'my_node'
● This node Subscribes to the image topic of interest, ie, /usb_cam/image_raw
● Converts the ROS image data to OpenCV image data

○ imRos = rospy.Subscriber(topic, Image, self.imaCallBack, queue_size=3)
○ The imaCallBack function is called every time there is data in this specific topic name

● The imaCallBack function gets inp_im witch is he ROS image data
● So it is converted to OpenCV image data (eg, Numpy array)

○ imCV = self.bridge.imgmsg_to_cv2(inp_im, "bgr8")

import cv2
import rospy
from sensor_msgs.msg import Image
from threading import Lock
from cv_bridge import CvBridge, CvBridgeError

class ImagePipeline:
def __init__(self):

self.mutex = Lock()
rospy.init_node('my_node', anonymous=True)
self.bridge = CvBridge()
topic = '/usb_cam/image_raw'
imRos = rospy.Subscriber(topic, Image, self.imaCallBack, queue_size=3)

self.ImOut = rospy.Publisher('/out/image', Image, queue_size=3)

try:
rospy.spin()

except KeyboardInterrupt:
print("Rospy Spin Shut down")

def imageCallBack(self, inp_im):
try:

imCV = self.bridge.imgmsg_to_cv2(inp_im, "bgr8")
except CvBridgeError as e:

print(e)
if imCV is None:

print ('frame dropped, skipping tracking')
else:

self.ImageProcessor(imCV)

Hence, now you do your processing by implementing self.ImageProcessor(imCV)

● Detect faces in imCV image and draw bounding boxes by using OpenCV (see this tutorial); steps:

○ Download the OpenCV cascade face detection model

○ Declare faceCascade = cv2.CascadeClassifier(‘model_path’)

○ Convert image to gray gray = cv2.cvtColor(imCV, cv2.COLOR_BGR2GRAY)

○ Detect face faces = faceCascade.detectMultiScale(gray, scaleFactor=1.1,

minNeighbors=5, minSize=(30, 30),

flags = cv2.cv.CV_HAAR_SCALE_IMAGE)

○ Draw bounding boxes
for (x, y, w, h) in faces:

cv2.rectangle(imCV, (x, y), (x+w, y+h), (0, 255, 0), 2)

Autonomous Robots - EEL 4930/5934 (Spring 2023) By Md Jahidul Islam Page 3

https://realpython.com/face-recognition-with-python/
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml

Part C: Publish the output image (with face boxes) as a topic: visualize topics in rqt_image_view
● Finally you can publish the output image as a ROS topic
● You already have the data structure in place

○ self.ImOut = rospy.Publisher('/out/image', Image, queue_size=3)
● Note that we now need to convert it back!

○ Convert OpenCV image data to ROS image data
○ Use the CvBridge().cv2_to_imgmsg(.) function
○ Then publish the self.ImOut.publish(.) function

● Learn how to publish your processed image as a ROS topic this way!
● Then visualize the image topics (input/output) by using rqt_image_view

○ Point your webcam/camera to your face and see the feed in /usb_cam/image_raw topic
○ You should see the corresponding output in the /out/image topic

Part D: Write a single launch file that for the whole project

Notice that the whole process needs to run several ROS nodes.
● The usb_cam node
● Your ROS node (my_node or whatever you name it)
● And the rqt_image_view node for visualization

ROS launch files allow you do initiate all these nodes through a single launch file
● Write a launch file that achieves this!
● Then test it using roslaunch [your_package_name] [launch_file_name]
● Your package directory should look like the following

Remember the submission instructions
● Submit through Canvas only
● Due: Feb 7, 2023 by 11.55pm

● Submit a single zip file with no more than 10MB size
○ A readme.txt with your name, GatorID, ROS version, OS version, etc.
○ Your ROS package (only your new Catkin package, do not include anything else)
○ A PDF of step-by-step demo with screen-shots of terminal outputs

● Assignment more than 10 MB file size will get negative penalty (-10% to -50%)

Autonomous Robots - EEL 4930/5934 (Spring 2023) By Md Jahidul Islam Page 4

