EEL 4930/5934: Autonomous Robots
HH1: Hands-on Homework #1 (Spring 2023)

Tasks Overview:
A. Prepare Workspace: ROS, Catkin, and Python-OpenCV Packages
B. Interface webcam / usb camera in ROS
i Initiate camera and visualize image topics
ii. Subscribe to image topic and extract data: OpenCV-Bridge
iii. Perform image processing: detect face draw bounding boxes (in OpenCV)
C. Publish the output image (with face boxes) as a topic: visualize topics in rqt image view
D. Write a single launch file for the whole project, ie, that does the following
i Starts the usb_cam node (for step B.i)
ii. Start the face detector node (for step B.ii, B.iii, and C)
ii. Startthe rqt image view node for visualization

Grading Breakdown

EEL 4930 EEL 5934
e PartA: 25% o PartA: 20%
e PartB: 50% (20% + 20% + 10%) e PartB:45% (15% + 20% + 10%)
e PartC: 25% e PartC:20%
e Part D: extra! (not required, may get bonus points) e PartD: 15%
References:

e Lecture 1-2 contents and ROS wiki
e Recommendations:
o Use alinux laptop (virtual OS is fine) and its built-in camera
o Alternatingly use a PC or Raspberry PI (3 or 4) or Jetson nano (use any USB camera)

Submission: [Through Canvas only; Due: Feb 7, 2023 by 11.55pm]
e Asingle zip file with no more than 10MB size
o A readme.ixt with your name, GatorlD, ROS version, OS version, etc.
o Your ROS package (only your new Catkin package, do not include anything else)
o A PDF of step-by-step demo with screen-shots of terminal outputs
e Assignment more than 10 MB file size will get negative penalty (-10% to -50%)

Part A: Prepare Workspace: ROS, Catkin, and Python-OpenCV Packages
° Install Python and OpenCYV libraries (if you do not have them already)
o Get Python (3.8 or 3.9): sudo apt install python3
o Verify the installation: python3 --version
o Get OpenCV 3.2.x: sudo apt install python3-opencv
o Verify the installation: python3 -c "import cv2; print(cv2. version)"

° Install ROS (if you do not have them already)

o Installation: https://wiki.ros.org/ROS/Installation

o Make sure to install the correct distribution for your platform (see Lecture 2 slides)

o ROS Noetic
[Primarily targeted at the Ubuntu 20.04 (Focal); should work with Raspberry Pi 4s
[Follow the installation instruction and reference video

o ROS Melodic:
] Primarily targeted at the Ubuntu 18.04 (Bionic); should work with Raspberry Pi 3s
| Follow the installation instruction

Autonomous Robots - EEL 4930/5934 (Spring 2023) By Md Jahidul Islam Page 1

https://wiki.ros.org/ROS/Installation
http://wiki.ros.org/noetic/Installation/Ubuntu
https://www.youtube.com/watch?v=Qk4vLFhvfbI&list=PLLSegLrePWgIbIrA4iehUQ-impvIXdd9Q&index=2
http://wiki.ros.org/melodic/Installation/Ubuntu

e Create and setup a Catkin workspace:

o Follow the Create\Workspace Tutorial and reference video

o Practice a couple of sample projects (talker/listener, turtlesim, etc.)

Part B: Interface webcam / usb camera in ROS
e Install the usb_camera package; ie: sudo apt install ros-noetic-usb-cam
e [f you are using external usb cameras
o Plug the camera and check which usb bus is reading it (1 susb command)
e Initiate camera by running the usb_cam package (which will start the usb cam node)
o You can use both rosrun or roslaunch to do this
o Check the image topics once the camera is initiated: rostopic list (se below)

2: fopt/ros/noetic/sharef/usb_cam/launch/usb_cam-test.launch http://localhost:11311 Al O x

:~/catkin_ws/src/my_face_detection$ roslaunch usb_cam usb_cam-test.launch
. logging to /fhome/boxiao/.ros/log/65fc4e68-984b-11ed-908e-3d0d7e24ac5e/roslaunch-ece-p206c-magellanic-12659
02.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://ece-p206c-magellanic:35913/

3: boxiao@ece-p206c-magellanic: ~ ~ o x

:~$ rostopic list
/rosout
/rosout_agg

:~$ rostopic list
/image_view/output
/image_view/parameter_descriptions
/image_view/parameter_updates
/rosout
/rosout_agg
fusb_cam/camera_1info
/usb_cam/image_raw
fusb_cam/image_raw/compressed
/usb_cam/image_raw/compressed/parameter_descriptions
fusb_cam/image_raw/compressed/parameter_updates
/usb_cam/image_raw/compressedDepth
/usb_cam/image_raw/compressedDepth/parameter_descriptions
/usb_cam/image_raw/compressedDepth/parameter_updates
/usb_cam/image_raw/theora
/usb_cam/image_raw/theora/parameter_descriptions
/usb_cam/image_raw/theora/parameter_updates

i~5

o You can visualize the image data using rqt _image view (see below)

Jusb_cam/image_raw - 9 rqt_image_view_ImageView - rqt _ o0 Q
Bimage View D® -0
/usb_cam/image_raw -|[e][@][o [¢]O[10.00m [2][&

fimage_raw_mouse_left| | | Smoothscaling | 9| 0°| € || Gray

e Now create your own ROS package which will
o Subscribe to the image topic of interest, ie, /usb cam/image raw
o Convert the ROS image data to OpenCV image data
m By using Open-CV bridge (see this tutorial)
m CvBridge is a ROS library that provides an interface between ROS and OpenCV

Autonomous Robots - EEL 4930/5934 (Spring 2023) By Md Jahidul Islam Page 2

http://wiki.ros.org/ROS/Tutorials/catkin/CreateWorkspace
https://www.youtube.com/watch?v=8uxd9RBQvmQ&list=PLLSegLrePWgIbIrA4iehUQ-impvIXdd9Q&index=3
http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAndOpenCVImagesPython

Here is a sample piece of code, that does the following

Initiates a ROS node named 'my node'
This node Subscribes to the image topic of interest, je, /usb cam/image raw
e Converts the ROS image data to OpenCV image data
© 1imRos = rospy.Subscriber (topic, Image, self.imaCallBack, queue size=3)
o The imaCallBack function is called every time there is data in this specific topic name
e The imaCallBack function gets inp im witch is he ROS image data
e Soitis converted to OpenCV image data (eg, Numpy array)
0 imCV = self.bridge.imgmsg to cv2(inp_ im, "bgr8")

import cv2

import rospy

from sensor msgs.msg import Image

from threading import Lock

from cv _bridge import CvBridge, CvBridgeError

class ImagePipeline:
def init (self):
self.mutex = Lock()
rospy.init node('my node', anonymous=True)
self.bridge = CvBridge ()
topic = '/usb_cam/image raw'
imRos = rospy.Subscriber (topic, Image, self.imaCallBack, queue size=3)

self.ImOut = rospy.Publisher ('/out/image', Image, queue size=3)

try:
rospy.spin()
except KeyboardInterrupt:
print ("Rospy Spin Shut down")

def imageCallBack(self, inp im):
try:
imCV = self.bridge.imgmsg _to cv2(inp_im, "bgr8")
except CvBridgeError as e:
print (e)
if imCV is None:
print ('frame dropped, skipping tracking')
else:
self.ImageProcessor (imCV)

Hence, now you do your processing by implementing self.ImageProcessor (imCV)
e Detect faces in imCV image and draw bounding boxes by using OpenCV (see this tutorial); steps:

o Download the OpenCV cascade face detection model

o Declare faceCascade = cv2.CascadeClassifier (‘model path’)

o Convertimage to gray gray = cv2.cvtColor (imCV, cv2.COLOR BGR2GRAY)

o Detectface faces = faceCascade.detectMultiScale (gray, scaleFactor=1.1,
minNeighbors=5, minSize=(30, 30),
flags = cv2.cv.CV_HAAR SCALE IMAGE)

o Draw bounding boxes
for (x, y, w, h) in faces:

cv2.rectangle (imCV, (x, y), (x+w, y+h), (0, 255, 0), 2)

Autonomous Robots - EEL 4930/5934 (Spring 2023) By Md Jahidul Islam Page 3

https://realpython.com/face-recognition-with-python/
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml

Part C: Publish the output image (with face boxes) as a topic: visualize topics in rqt_image_view
Finally you can publish the output image as a ROS topic
You already have the data structure in place
o self.ImOut = rospy.Publisher('/out/image', Image, queue size=3)
e Note that we now need to convert it back!
o Convert OpenCV image data to ROS image data
o Usethe CvBridge () .cv2_to imgmsg(.) function
o Then publish the self.ImOut.publish(.) function
Learn how to publish your processed image as a ROS topic this way!
Then visualize the image topics (input/output) by using rqt _image view
o Point your webcam/camera to your face and see the feed in /usb cam/image raw topic
o You should see the corresponding output in the /out/image topic

Part D: Write a single launch file that for the whole project

Notice that the whole process needs to run several ROS nodes.
e The usb camnode

e Your ROS node (my node or whatever you name it)
e Andthe rgt image view node for visualization

ROS launch files allow you do initiate all these nodes through a single launch file
e Write a launch file that achieves this!
e Thentestitusing roslaunch [your package name] [launch file name]
e Your package directory should look like the following

catkin_ws src my_face_detection

CMakelLists launch package. scripts src
xt xml

Remember the submission instructions
e Submit through Canvas only

e Due: Feb 7, 2023 by 11.55pm

e Submit a single zip file with no more than 10MB size
o A readme.txt with your name, GatorID, ROS version, OS version, etc.
o Your ROS package (only your new Catkin package, do not include anything else)
o A PDF of step-by-step demo with screen-shots of terminal outputs

e Assignment more than 10 MB file size will get negative penalty (-10% to -50%)

Autonomous Robots - EEL 4930/5934 (Spring 2023) By Md Jahidul Islam Page 4

