Introduction: Outline & Logistics EEL 4930/5934: <u>Autonomous Robots</u> Spring 2023

Md Jahidul Islam

Lecture 1

EEL 4930/5934: Autonomous Robots

⇒ Spring 2023 Lectures

- M,W,F | LAR 0330 | 3:00-3:50 PM
- <u>Final exam:</u> May 3rd at 12:30-2:30 PM
- ⇒ Course Directory: Canvas
- ⇒ Forum: Teams

2

AuRo: Autonomous Robots

Robotics and intelligent systems

- ⇒ <u>Domain</u>: ground, underwater, aerial
- ⇒ <u>Topic</u>: perception, planning, control
- ⇒ <u>Skill</u>: hardware, software, domain

⇒ Theory and experimental fundamentals

- Sensory design and integration concepts
- Robot Operating System (ROS)
- Motion kinematics analytics
- Robot perception, planning, and control
- Unmodeled environmental/social factors
- Aspects of field deployments

⇒ Hw platforms: TurtleBot-4, J. Nanos, R. Pis
 ⇒ OS platforms: ROS / ROS2 (Python / C++)

3

AuRo Resources

⇒ Textbooks

- Introduction to Robotics: Mechanics and Control By John Craig. ISBN-13: 978-0133489798. Pearson; 4th edition.
- **Probabilistic Robotics** By <u>Sebastian Thrun</u>, Wolfram Burgard and Dieter Fox. ISBN-13: 978-0262201629, Intelligent Robotics & Autonomous Agents; 1st Edition.

⇒ Recommended pointers

- Robot Operating System (ROS): http://wiki.ros.org/ROS/Tutorials
- ROS2 tutorials: https://docs.ros.org/en/foxy/Tutorials.html
- <u>Good online resources:</u>
 - Robotics Specialization by UPenn; AI for Robotics from GTech
 - MIT 18.06 Linear Algebra; SLAM Course by Prof. Cyrill Stachniss
 - TUM Multiple View Geometry by Prof. Daniel Cremers
 - UC Berkeley Artificial Intelligence CS 188 by Prof. Pieter Abbeel

Check if they are available online!

Class lecture materials and handouts are very important

Instructor, TA, and Rubric

Instructor

TA

Md Jahidul Islam

- Email: jahid@ece.ufl.edu
- **OH**: Thursday 4:00 5:00 PM At LAR 339D

Boxiao Yu

- Email: boxiao.yu@ufl.edu
- **OH:** Tuesday 4:00-5:00 PM

At NEB 222

ltem	Points	% of Final Grade	
	1 01110		
Hands-on Homework (HH1 - HH4)	4 x 10	40	
Analytical Homework (AH1 - AH2)	2 x 10	20	
Mid-term	1 x 15	15	
Final exam / project option	1 x 25	25	
Total		100	

Percent	Grade	Grade Points
92 or More	А	4.00
88.0 - 91.9	A-	3.67
84.0 - 87.9	B+	3.33
81.0 - 83.9	В	3.00
78.0 - 80.9	B-	2.67
75.0 - 77.9	C+	2.33
72.0 - 74.9	С	2.00
67.0 - 71.9	C-	1.67
64.0 - 66.9	D+	1.33
60.0 - 63.9	D	1.00
55.0 - 59.9	D-	0.67
Below 55	E	0.00

EEL 4930 vs EEL 5934

⇒ Pre-requisites

- One of
 - EEL 4744C: Microprocessor Applications
 - EEL4712C: Digital Design
- Fluent in object-oriented programming
 - Python and/or C++
- Basics of linear algebra and calculus
- +EEL 5934: Embedded systems or AI/ML

⇒ HH: Hands-on Homework

- Four HHs: 4 x 10 = 40
 - HH1: ROS integration and simulation
 - HH2: Kinematics
 - HH3: Visual Perception
 - HH4: Active Planner
- +EEL 5934: some advanced parts

⇒ AH: Analytical Homework

- Two AHs: 2 x 10 = 20
 - **AH1:** Kinematics
 - AH2: SLAM
- +EEL 5934: some advanced parts

⇒ Mid-term and Final/Project

- <u>Mid-term exam:</u> 15 points
 - Approx 9th week (will be announced)
 - Paper-based (most likely open-book)
- Final exam or project: 25 points
 - Finals are paper-based individual exam
 - Project option is strongly encouraged
 - Details are due <u>by March 22</u>
 - Team members: 1-5
- More details will be discussed in class

AuRo: Topics Overview (1/3)

VERSITY of

AuRo: Topics Overview (2/3)

⇒ <u>Week 6-7:</u> Perception: UGVs / AUVs / UAVs

- 2D and 2D perception
- Visual and inertial measurements
- Gyroscope, accelerometers, IMU, GPS
- Range sensors, camera vision and LiDAR
- Acoustic and hyperspectral perception

⇒ <u>Week 8-9:</u> Deep Diving Into Visual Perception

- Robot vision basics UGVs / AUVs / UAVs
- Image processing and filtering
- Object detection, tracking, and following
- Stereo vision and 3D perception

⇒ <u>Week 10-11:</u> Planning: Motion Planners and Path Planners

- Dynamic programming and SOTA planners
- UGV and UAV planning: social and behavioral aspects
- AUV planning: semi-autonomous and long-term planning

Some advanced topics for EEL 5934

HH2 Due; HH3 Out

Mid-term By Wk-10

Project Finalization

8

FLORID

AuRo: Topics Overview (3/3)

 ⇒ <u>Week 12-13:</u> SLAM: Simultaneous Localization and Mapping 2-DOF, 3-DOF, and 6-DOF robots VInS (Visual inertial SLAM), SVinS Acoustic and optical localization 	Some advanced topics for EEL 5934
	HH4 Due; AH2 Out
 ⇒ Week 13-14: Control: Linear and Non-linear Controls Kalman Filtering (KF), extended KF, unscented KF Particle filters and probabilistic filtering Summary discussions: UGVs / AUVs / UAVs 	Some advanced topics for EEL 5934 AH2 Due
⇒ <u>Week 15:</u> Final Exam and Project Showcase	Project Updates

AuRo: General Expectations

- ⇒ Understanding the past, present, and future of autonomous robotics
- ⇒ Getting exposed to the current state-of-the-art of scientific literature
 - ⇒ Developing hands-on experience in the relevant engineering aspects (in HHs and AHs)
 - ⇒ Trying out some ideas or extensions of your own through a final project
 - ⇒ This course should prepare you well for becoming a roboticist
 - Competitive robotics laboratories in academia / industry
 - ⇒ Time and effort commitment: high (so is the reward)
 - \Rightarrow Tools you should be comfortable with:
 - Basic hw/sw systems and linear algebra concepts
 - Python/C++ programing!

Make hundred mistakes - just don't repeat the same mistakes

EEL 4930/5934: Autonomous Robots

AuRo: Grading Policy

\Rightarrow Grading and reporting

- Grades are periodically posted online
- Grades are final after <u>1 week</u> of posting
- Checkout the general UF grading policy

⇒ Final rubric and grade assignment

- HH/AH grades are final once graded
- Mid-term, and final/project grades will be curved if necessary
- **Top 3** projects will get **+5** bonus points!
- ⇒ Pay attention to the feedback and be present!
- ⇒ Attending lectures is crucial in this course

Item	Points	% of Final Grade
Hands-on Homework (HH1 - HH4)	4 x 10	40
Analytical Homework (AH1 - AH2)	2 x 10	20
Mid-term	1 x 15	15
Final exam / project option	1 x 25	25
Total		100

Percent	Grade	Grade Points
92 or More	A	4.00
88.0 - 91.9	A-	3.67
84.0 - 87.9	B+	3.33
81.0 - 83.9	В	3.00
78.0 - 80.9	B-	2.67
75.0 - 77.9	C+	2.33
72.0 - 74.9	С	2.00
67.0 - 71.9	C-	1.67
64.0 - 66.9	D+	1.33
60.0 - 63.9	D	1.00
55.0 - 59.9	D-	0.67
Below 55	E	0.00

Self Assessment (1/2)

$$\mathbf{A} = \begin{bmatrix} 3 & 4 & -2 \\ 1 & 4 & -1 \\ 2 & 6 & -1 \end{bmatrix}$$

- Does A⁻¹ exist?
- What are the eigenvalues of A?
- What is the rank of A?

- What is a vector space?
- What are the four fundamental subspaces?
- What is, and how to do
 - LU factorization
 - SVD: Singular Value decomposition

How to solve Ax=b when

- A is square and invertible/non-invertible
- A is rectangular (mxn): m>n or m<n
- Matrix and vector norms

Self Assessment (2/2)

$$p(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

What is $p(x; \mu, \Sigma)$ for multivariate Gaussian (normal)?

$$p(x;\mu,\Sigma) = rac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)
ight)$$

- What is a probability distribution?
- What are:
 - PMF: probability mass function
 - PDF: probability density function
 - CDF: cumulative distribution function

Write a Python/C++ code for probabilistic sampling

- Coin toss
- Gaussian distribution

Lecture Contents

⇒ Robot, robotics, and AI

- ⇒ Major types and kinds of robots/robotics
 - Cartesian coordinate robots
 - Wheeled robots
 - Robot manipulators
 - Surgical robots
 - Assistive and Social Robots
 - Legged and humanoid robots
 - Underwater robots
 - Aerial robots
 - Micro-robots and soft robotics
 - ...

⇒ Robot Components

- \Rightarrow A brief history of robotics
- ⇒ Getting started in ROS
 - ROS-1 (melodic or noetic)
 - ROS-2
 - Rviz

What Is A Robot?

⇒ A machine (system or subsystem)

- Designed for specific tasks
- Programmable
- Does on-board computation

- ⇒ Autonomous or semi-autonomous
- ⇒ Mobile or stationary
- ⇒ Standalone or collaborative
- ⇒ Artificially Intelligent or non-intelligent!

Where Are The Robots?

Number and incidence of industrial robots (per thousand workers) by metropolitan statistical area, 2015

UF FLORIDA

16

Autonomous Robots And Systems

Cartesian Coordinate Robots

⇒ Cartesian Robots

- Also called *linear robots*
- Three principal axes with linear control
- Can cover a 3D (2.5D) Space
- <u>Example:</u> 3D printers, scanners, and painting robots

18

Wheeled Robots

⇒ Robots with wheels!

- Ball robots, 2/3/4-wheeled, or omni-wheeled
- Low-power and simple motion kinematics
 - Mainly ground (2D) robots
 - 2-DOF/3-DOF locomotion
- <u>Application:</u> warehouse, agriculture, and food delivery robots

Also Wheeled Robots!

⇒ Advanced AI features

- Remote operation, long-term operation
- On-board AI computing
- Mainly ground (2D) robots
- Example: autonomous driving
- <u>Future:</u> self-driving cars!

Robot Manipulators

⇒ Manipulators

- Very specific 'automated' operation
- Closed-form motion kinematics
- Fast, efficient, low-power, and deterministic
- Vast mature state-of-the-art literature
- <u>Application:</u> Mainly in industry assembly lines
- <u>Future:</u> robot learning from demonstration

Surgical Robots

⇒ Surgical robots and robotic instruments

- Allows precise operation
- Shared control interface
 - Mostly remotely controlled, *ie,* tele-operation
 - With some autonomous features
 - Predefined and specific motion control
 - Usually closed-form kinematics
- <u>Application:</u> robotic-assisted surgery
- <u>Future:</u>
 - AR/VR capabilities for distant operations
 - Fully autonomous surgeons

Assistive And Social Robots

⇒ Assistive and social robots

- Social and interactive features are important
 - Socially compliant motion and gaze
 - Application-specific interaction
- Vast literature in human-robot interaction
- <u>Application</u>: assistive living for elderly, educational and guide industry

Legged And Humanoid Robots

⇒ Legged, bipeds, and humanoid robots

- Inspired by biological systems
 - Motion kinematics like humans, dogs, spiders!
- Primary research literature on
 - Stability control and motion control
 - Human-robot *cooperative missions*
- Have a history of being the forefronts of AI
- <u>Application</u>: human assistance in workplace, defense
- <u>Future</u>: more social/useful dog robots, pet robots, advanced warfare, planetary missions, <u>sentience</u>!

24

FLORIDA

Aerial Robots

⇒ UAVs (Unmanned Aerial Vehicles)

- Complex 6-DOF motion kinematics
 - Multi-rotor, fixed-wing, single-rotor, etc.
- On-board *hard real-time* operation
- Vast literature and industrial advancements
- <u>Application:</u> agriculture, archeology, defense, mapping, and entertainment industry
- <u>Future:</u> food/package delivery, long-term flights

Underwater Robots

⇒ AUVs (Autonomous Underwater Vehicles)

- 6-DOF or 3-DOF motion kinematics
 - Flipper or thruster based motion
 - Biological motion kinematics
- On-board real-time constraints
 - No GPS and WiFi/cloud connectivity
- Defense and industrial interests
- <u>Application</u>: marine archeology, biology, subsea monitoring, inspection, mapping, and exploration
- <u>Future:</u> full autonomous operation, 3D sensing, long-term monitoring, underwater positioning systems
- <u>Other types:</u>
 - **ROVs:** Remotely Operated Vehicles (*ie,* drones)
 - ASVs: Autonomous Surface Vehicles

Micro-Robots And Soft Robotics

⇒ Microbots

- *Ultra low-power* miniature robots
 - Single microcontroller system
 - Specialized submicron motion 0
- Application: defense and medical robots
- Future: autonomous in-vivo missions

⇒ Soft robotics

- Compliant materials instead of rigid links
- Unique design, control, and fabrication
 - Specialized submicron motion 0
 - Physically flexible body parts Ο
- Soft actuation & motion control systems
- Application: surgical, wearable, and wearable and rehabilitation robots
- Future: smart exoskeletons

27

Swarm Robotics

⇒ Swarm of robots!

- A team of robots performing a coordinated task
 - Known as the *swarm intelligence*
 - Bio-inspired concept (from bees, ants, birds, etc.)
- Two main features: *communication* and *coordination*
- Vast literature in collective swarm behavior
- <u>Application:</u> packaging industry, agriculture, micro-robotics, and entertainment industry (drone shows)
- <u>Future:</u> defense with multi-agent missions, search-and-rescue

28

Brainstorm!

⇒ Give real-world examples...

- A multi-robot collaborative system
 - Mobile
 - Stationary
- A human-robot team in
 - Cooperative missions
 - Non-cooperative missions
- Single-agent interactive robot
 - $\circ \quad \text{Social settings} \quad$
 - Industrial / commercial settings

Components Of A Robotic System

Computational Pipeline

Perception-Planning-Control Loop

Agent-Action Perspective

ROS: Robot Operating System

What is ROS?

⇒ A middleware "OS" for robotics

- Open source *software packages*
 - Components + Tools + Interfaces
- For general-purpose *robot programming* + *hw/sw interfacing*
 - <u>Actuators:</u> things that move
 - <u>Sensors:</u> things that read the world
 - <u>Control system:</u> robots brain (AI functions!)
- Works best with linux distributions
- Visit <u>ros.org</u> for an introduction

⇒ Important concepts

- ROS nodes, services, topics, packages
- Data input (topic subscription) and output (topic publish)
- Data saving (ros bagging) and playing
- ROS simulators and learning packages
- Moving/controlling a robot with ROS

III ROS.org

33

FLORIDA

Pointers For Getting Started In ROS/ROS2

⇒ Install ROS *melodic* or *noetic* (ROS 1)

- Preferred: Linux laptops or Raspberry PI or Jetson Nanos
- Follow the instructions:
 - Getting started: <u>https://www.ros.org/blog/getting-started/</u>
 - Installation: https://wiki.ros.org/ROS/Installation
- Make sure to install the correct distribution for your platform

⇒ ROS2 documentation: <u>https://docs.ros.org/</u>

⇒ Learn basic ROS functionalities

- <u>ROS Noetic tutorials</u> by Robotics Back-End
- ROS Noetic tutorials by Emil Vidmark
- ROS2 Humble tutorials by Robotics Back-End
- Or browse any other resources!

All The Best

III ROS.org

34