Robot Perception

EEL 4930/5934: Autonomous Robots

Spring 2023
Md Jahidul Islam

Lecture 6

ECE | Florida TTF |university of

Sensors

Exteroceptive and Proprioceptive Sensors

\Rightarrow Exteroceptive sensing

- External information from the environment
- Example:
- Tactile sensors
- Vision sensors: cameras
- Proximity sensors: LiDAR, radar, ultrasonic sensors, stereo cameras
\Rightarrow Proprioceptive sensing
- Internal information about the robot: state, motion, joint angles, etc.
- Example:
- Position and velocity: encoders
- Location: GPS

- Attitude: Inertial measurement units (IMU), accelerometers, force sensors

AUV Perception: Robot Convoying

https://youtu.be/Em7V-vBApHc

Aqua AUV Components

UAV Perception: 3D Mapping

https://youtu.be/cbczfgH1x0s

UAV Components

UAV base station

UGV Perception

TurtleBot-4 Components

SDC: Self Driving Cars!

SDC: Visual Perception

SDC: Learning Visual Perception

Machine Perception: Traffic Monitoring

Visual Perception

In Robotics:

A Hands-on
 Introduction

- Camera model:
- Intrinsic and extrinsic parameters
- Projection matrix
- Perspective transformation
- Homography estimation
- Camera calibration
- Stereo geometry
- Stereo camera configuration
- Disparity and depth-map

Pinhole Camera Model

CCD \leftrightarrow Image Pixels

K: Intrinsic Matrix

Intrinsic Parameters

- m_{x}, m_{y}
- f
- p_{x}, p_{y}
- s (skew) is often considered
- In K[0, 1] position
- Analog cameras

Assume origin at camera center $\{C\}=\{W\}$

$$
\lambda\left[\begin{array}{c}
u_{i m g} \\
v_{i m g} \\
1
\end{array}\right]=K\left[\begin{array}{l}
x_{w} \\
y_{w} \\
z_{w}
\end{array}\right]=\left[\begin{array}{ccc}
m_{x} f & 0 & p_{x} \\
0 & m_{y} f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{w} \\
y_{w} \\
z_{w}
\end{array}\right]
$$

P: Projection Matrix

$$
\lambda\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=K\left[\begin{array}{ll}
R & t
\end{array}\right]\left[\begin{array}{c}
x_{w} \\
y_{w} \\
z_{w} \\
1
\end{array}\right]=P\left[\begin{array}{c}
x_{w} \\
y_{w} \\
z_{w} \\
1
\end{array}\right]
$$

$$
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f_{x} & 0 & p_{x} \\
0 & f_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{0} \\
r_{21} & r_{22} & r_{23} & t_{1} \\
r_{31} & r_{32} & r_{33} & t_{2} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{w} \\
y_{w} \\
z_{w} \\
1
\end{array}\right]
$$

$$
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{w} \\
y_{w} \\
z_{w} \\
1
\end{array}\right]
$$

$$
P=K\left[\begin{array}{ll}
R & t
\end{array}\right]
$$

Perspective Transformation: Homography

Homography:

Transformation between two planes (up to a scale factor)

Transformation cases:

- Pure camera rotation: fixed camera center
- Same planar surface viewed by two cameras

$$
\begin{aligned}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
x^{\prime} & =\frac{h_{11} x+h_{12} y+h_{13}}{h_{31} x+h_{32} y+h_{33}} \\
y^{\prime} & =\frac{h_{21} x+h_{22} y+h_{23}}{h_{31} x+h_{32} y+h_{33}}
\end{aligned}
$$

H: Homography Estimation

$$
\frac{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]}{\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}}=\frac{\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}{\boldsymbol{H}} \underset{\boldsymbol{x}, \boldsymbol{y}}{ }
$$

When $n \gg 4$ points are available

- Solve using SVD
- Use RANSAC algorithm
- Why SVD and RANSAC?

Solving for H: Use SVD

2Nx8 8 8 1 2N 1

$\left.\begin{array}{l}\text { Point } 1\left[\begin{array}{cccccccc}x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1} x_{1}^{\prime} & -y_{1} x_{1}^{\prime} \\ 0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1} y_{1}^{\prime} & -y_{1} y_{1}^{\prime} \\ x_{2} & y_{2} & 1 & 0 & 0 & 0 & -x_{2} x_{2}^{\prime} & -y_{2} x_{2}^{\prime} \\ 0 & 0 & 0 & x_{2} & y_{2} & 1 & -x_{2} y_{2}^{\prime} & -y_{2} y_{2}^{\prime} \\ \text { Point } 2 & \text { Point } 4 & y_{3} & y_{3} & 1 & 0 & 0 & 0\end{array}-x_{3} x_{3}^{\prime}\right. \\ 0\end{array} y_{3} x_{3}^{\prime}\right]\left[\begin{array}{l}h_{11} \\ x_{4} \\ y_{4}\end{array} 1\right.$

$$
\mathrm{A}_{m \times n}=\mathrm{U}_{m \times m} \Sigma_{m \times n} \mathrm{~V}_{n \times n}^{\top} \quad m \geq n
$$

$\Sigma=\left[\begin{array}{cccc}\sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right]$

$$
\begin{gathered}
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0 \\
\mathrm{U}^{\top} \mathrm{U}=\mathrm{I} \\
\mathrm{~V}^{\top} \mathrm{V}=\mathrm{I}
\end{gathered}
$$

$$
\mathrm{A}=\mathrm{U}_{1} \sigma_{1} \mathrm{~V}_{1}^{\top}+\mathrm{U}_{2} \sigma_{2} \mathrm{~V}_{2}^{\top}+\cdots+\mathrm{U}_{n} \sigma_{n} \mathrm{~V}_{n}^{\top}
$$

\boldsymbol{A} is rank deficient, the least square solution (use normal equation)

$$
h=\left(A^{T} A\right)^{-1}\left(A^{T} b\right)
$$

We can also use SVD to solve this $A h=0$

- A is $\mathbf{2 N x 9}$ and \mathbf{h} is $\mathbf{9 x 1}$ (see next slide)

SVD Pointers

- UCSD lecture UConn lecture
- U-Illinois lecture ROS-OpenCV

Homography Transformation: HH3-A

$\mathrm{U}:[(0,0),(\mathrm{w}, \mathrm{h}),(\mathrm{w}, 0),(0, \mathrm{~h})]$
$\mathrm{V}:$ find the points in the 'destination' image
Formulate the rank-deficient A matrix
(see previous slide)
\# SVD composition
$u, s, v=n p . l i n a l g . \operatorname{svd}(A)$
We are solving
$A h=0$
\# solution: right-most singular vector into a 3×3
$\mathrm{H}=\mathrm{np}$. reshape $(\mathrm{v}[8],(3,3))$
\#normalize and now we have H
$\mathrm{H}=(1 / \mathrm{H}$. item (8)) $* \mathrm{H}$
that $H[3,3]=1$
\# warp the logo image into the destination image
imw, imh = im_dest.shape[1], im_dest.shape[0] mask $=c v 2$. warpPerspective (im_logo, H, (imw, imh))
\# use mask to generate the final image (bonus +5)

Homography Transformation: HH3-A

Homography: Pure Rotation

360 panorama

Self study!

- Take 8-10 images in pure rotation
- Create panorama using homography!
- See cs.brown.edu/courses/cs129/results/final/yunmiao/
$\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$

Points \boldsymbol{p} in left camera correspond to points \boldsymbol{p}^{\prime} in right camera

- Pure rotation is related by homography $\boldsymbol{p}^{\prime}=\boldsymbol{H p}$
- How to find \mathbf{H} ?

For a 3D point \mathbf{X}

- Assuming first camera at origin, $p=K\left[{ }^{13 \times 3} 0^{3 \times 1}\right] X=K X$
- Assuming the right camera is transformed by R, t

$$
p^{\prime}=K\left[R \quad t=0^{3 \times 1}\right] X=K R X=K R K^{-1} p=H p
$$

- Thus $\boldsymbol{H}=\boldsymbol{K} \boldsymbol{R} \boldsymbol{K}^{-1} \leftrightarrow \boldsymbol{R}=\boldsymbol{K}^{-1} \mathbf{H} \boldsymbol{K}$

We can recover camera parameters from \boldsymbol{H}

Camera Calibration

Define real world coordinates of 3D points using checkerboard pattern of known size.

Capture the images of the checkerboard from different viewpoints.

Use findChessboardCorners method in OpenCV to find the pixel coordinates (u, v) for each 3D point in different images

Find camera parameters using calibrateCamera method in

 OpenCV, the 3D points, and the pixel coordinates.- Find known 2D-3D point pairs
- Find the projection matrix $\mathbf{P}: p_{11}$ to p_{34}
- Find the extrinsic parameters: \mathbf{R} and \mathbf{t}
- Find the intrinsic matrix \mathbf{K}
See LearnOpenCV tutorial

Finding $P=K[R \quad t]$

$$
\lambda\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

$$
u=\frac{p_{11} x+p_{12} y+p_{13} z+p_{14}}{p_{31} x+p_{32} y+p_{33} z+p_{34}}, \quad v=\frac{p_{21} x+p_{22} y+p_{23} z+p_{24}}{p_{31} x+p_{32} y+p_{33} z+p_{34}}
$$

$$
\left[\begin{array}{lllllllllll}
x_{1} & y_{1} & z_{1} & 1 & 0 & 0 & 0 & 0 & -x_{1} u & -y_{1} u & -z_{1} u \\
0 & 0 & 0 & 0 & x_{1} & y_{1} & z_{1} & 1 & -x_{1} v & -y_{1} v & -z_{1} v \\
& & & & & \ldots &
\end{array}\right]\left[\begin{array}{l}
p 11 \\
p 12 \\
p 13 \\
p 14 \\
p 21 \\
p 22 \\
h 23
\end{array}\right]=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Explore the following pointers:

- How to get P efficiently by taking advantage of $z=0$?
- How to find $\boldsymbol{R}, \boldsymbol{t}$, and \boldsymbol{K} given the projection matrix \boldsymbol{P} ?

Libraries:

- ROS, OpenCV
- CalTech Matlab code

Finding K: HH3-B

Find the intrinsic calibration matrix of either:

- Your TurtleBot-4 or
- Your cellphone camera

Process:

- Print a checkerboard and place it on a wall
- Use any of the following libraries:
- ROS, OpenCV
- CalTech Matlab code
to calibrate your camera
- Report the K
- Check if the $\boldsymbol{f}, \boldsymbol{p}_{x}, \boldsymbol{p}_{\boldsymbol{y}}$ are correct!

Stereo Cameras

Left view
Right view

Stereo: two camera lenses are offset by a 'baseline'

- Simulates human binocular vision: left and right views
- Relative depth perception
- Epipolar geometry: two-view case

Stereo Camera: Baseline and Disparity

Stereo Rectification

Original images

Left image
Rectified images

Right image

Epipolar Geometry

Right view

- Camera centers: $\mathbf{O}_{\mathrm{L}}, \mathrm{O}_{\mathrm{R}}$
- Baseline:
- The line connecting the optical centers $B=O_{L} O_{R}$
- Epipoles: e_{L}, e_{R}
- Intersection of image planes with the baseline
- Epipolar plane: $\mathbf{O}_{\mathrm{L}}-\mathbf{O}_{\mathrm{R}}-\mathbf{X}$
- Plane connecting the optical centers and a 3D point
- Epipolar lines:
- Lines defined by the intersection of the epipolar plane and the two image planes

A pixel in the left image \mathbf{u}

- Can correspond to $\mathrm{X}, \mathrm{X} 1, \mathrm{X} 2, \ldots$ (any 3D point in OX line)
- Gets projected into the right epipolar line

Epipolar Geometry: Two-View

$$
\begin{gathered}
P_{L}=\mathbf{K}_{\mathrm{L}}\left[\begin{array}{ll}
\mathbf{l} & \mathbf{0}
\end{array}\right] \quad \text { and } \quad P_{R}=\mathbf{K}_{\mathrm{R}}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \\
e_{L}=K_{L}\left[\begin{array}{ll}
\mathbf{l} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
-R^{\top} t \\
1
\end{array}\right]=-K_{L} R^{\top} t \\
e_{R}=K_{R}\left[\begin{array}{ll}
R & t
\end{array}\right]\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right]=K_{R} t
\end{gathered}
$$

Let's formulate the epipolar constraint!
$\overline{O_{L} X}=K_{L}^{-1} u$, and $\overline{O_{L} O_{R}}=-R^{\top} t$.
$\overline{O_{R} X}=K_{R}^{-1} v, \quad$ its projection in the left camera is: $-R^{T} t+R^{T} K_{R}^{-1} v$
The surface normal to the epipolar place: $\tilde{n}=R^{T}\left(t \times K_{R}^{-1} v\right)$

$$
\tilde{n}=\overline{O_{L} O_{R}} \times\left(-R^{\top} t+R K_{R}^{-1} v\right)=-R^{\top} t \times\left(-R^{\top} t+R^{T} K_{R}^{-1} v\right)
$$

$$
\text { Proof: } \quad \begin{aligned}
\tilde{n} & =\overline{O_{L} O_{R}} \times\left(-R^{T} t+R K_{R}^{-1} v\right) \\
& =\left[-R^{T} t\right]_{\times}\left(-R^{T} t+R^{T} K_{R}^{-1} v\right) \\
& =\left[-R^{T} t\right]_{\times} R^{T} K_{R}^{-1} v \\
& \left.=\left[R^{T} t\right]_{\times} R^{T} K_{R}^{-1} v \quad \text { (because }[a]_{\times}=[-a]_{\times}\right) \\
& =R^{T}\left([t]_{\times} K_{R}^{-1} v\right) \quad(\text { because } R(a \times b)=R a \times R b)
\end{aligned}
$$

Epipolar constraint: $\quad{\overline{O_{L}}{ }^{T}}^{T} \tilde{n}=u^{T} K_{L}^{-T} \tilde{n}=0$

Epipolar Constraint

$$
\begin{gathered}
P_{L}=\mathbf{K}_{\mathrm{L}}\left[\begin{array}{ll}
\mathbf{l} & \mathbf{0}
\end{array}\right] \quad \text { and } \quad P_{R}=\mathbf{K}_{\mathrm{R}}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \\
e_{L}=K_{L}\left[\begin{array}{ll}
\mathbf{l} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
-R^{\top} t \\
1
\end{array}\right]=-K_{L} R^{\top} t \\
e_{R}=K_{R}\left[\begin{array}{ll}
R & t
\end{array}\right]\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right]=K_{R} t
\end{gathered}
$$

Epipolar constraint: $\quad \bar{O}_{L} X^{\top} \tilde{n}=u^{T} K_{L}^{-T} \tilde{n}=0$

$$
\rightarrow\left(K_{L}^{-1} u\right)^{\top} R^{T}\left(t \times K_{R}^{-1} v\right)=0
$$

$$
\rightarrow u^{T} \underbrace{K_{L}^{-T} R^{T}[t]_{\times} K_{R}^{-1}}_{F^{T}} v=0
$$

$$
\rightarrow v^{\top} F u=0
$$

$$
F=K_{R}^{-T} \underbrace{[t]_{\times} R}_{E} K_{L}^{-1}=K_{R}^{-T} E K_{L}^{-1}
$$

$$
E=[t]_{\times} R
$$

Essential Matrix: $E=t \times R$

Fundamental Matrix: $\quad F=K_{R}^{-\top} E K_{L}^{-1} \equiv K^{-\top} E K^{-1}$

- Relates \mathbf{u} (left image point) and \mathbf{v} (right image point)
- The constraint: $\mathbf{v}^{\top} F \mathbf{u}=\mathbf{0}$

F: Fundamental Matrix

$$
\mathbf{v}^{\top} \mathbf{F} \mathbf{u}=\mathbf{0} \text { where } \mathbf{F}=\mathrm{K}^{-\top} \mathbf{E} \mathrm{K}^{-1}
$$

Fundamental Matrix:

- \mathbf{u} in the left image represent a line: $\mathbf{F u = 0}$ in right image
- Which is why $\mathbf{v}^{\boldsymbol{\top}}(\mathbf{F u})=\mathbf{0}$ makes sense!
- It is the epipolar line $\mathbf{L}=\mathbf{F u}$
- The actual match \mathbf{v} can be anywhere in this line
- The right epipole is also on this line
- \quad Therefore $\mathbf{e}^{\mathbf{T}}{ }_{\mathrm{R}}(\mathrm{Fu})=\mathbf{0}$
- Similarly, \mathbf{v} in the right image
- Represent a line: $\mathbf{F}^{\boldsymbol{\top}} \mathbf{v}=\mathbf{0}$ in the left image
- Left epipole satisfies $\mathbf{e}^{\top}\left(\mathbf{F}^{\top} \mathbf{v}\right)=\mathbf{0}$

Computing F: 8-point Algorithm

- Solve $\mathbf{A f}=\mathbf{0}$
- Use SVD! (see this)

Computing F: 8-point Algorithm

A $\quad \times 0$

The solution is not necessarily satisfy rank 2 constraint.

SVD Cleanup

8-point Algorithm

- Match 8 feature points
- Get $\mathbf{u}_{\mathbf{1}}: \mathbf{u}_{\mathbf{8}}$ and $\mathbf{v}_{\mathbf{1}}: \mathbf{v}_{\mathbf{8}}$
- Solve Af = 0
- Use SVD! (see this)

> f = SolveHomogeneousEq(A);
F = [f(1:3)'; f(4:6)'; f(7:9)'];
[$\mathrm{u} d \mathrm{v}$] $=\operatorname{svd}(F)$
F1 = F;
$d(3,3)=0 ;$
$\mathrm{F}=\mathrm{u}^{*} \mathrm{~d}^{*} \mathrm{v}^{\prime}$;

Computing F: 8-point + RANSAC

8-point + RANSAC

1. Perform 2D feature matching, eq: SIFT / FAST / ORB
2. Randomly choose 8 feature points
3. Solve \mathbf{F} using 8-point algorithm
a. Error term $\boldsymbol{\varepsilon}:\left|\mathbf{v}^{\boldsymbol{\top}} \mathbf{F u}\right|$
b. If ε is acceptable ($\varepsilon<$ threshold)

Return \mathbf{F}
4. Otherwise save the best \mathbf{F} (minimum $\boldsymbol{\varepsilon}$)
5. Repeat steps 2-4

See the implementation of
cv2.findFundamentalMat(U, V, Cv2.FM_RANSAC)

(c) Dr. Park

E: Essential Matrix

$$
F=K^{-\top} E K^{-1} \Rightarrow E=K^{\top} F K=\underline{t \times R}
$$

Essential Matrix:

- Represents the same relationship (uncalibrated camera)
- Also, $t= \pm$ nullspace $\left(E^{T}\right) / /$ can you prove it?
- How to get camera pose (R, t) from \mathbf{E}
- SVD!
- Then,

$$
\begin{aligned}
& E=U D V^{T}=\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{v}_{1}^{T} \\
\boldsymbol{v}_{2}^{T} \\
\boldsymbol{v}_{3}^{T}
\end{array}\right] \\
& R \in\left\{U W V^{T}, U W^{T} V^{T}\right\} \\
& \boldsymbol{t}= \pm \lambda \boldsymbol{u}_{3} ; \lambda \in \mathbb{R} \backslash 0
\end{aligned}
$$

- Where

$$
W=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

© Dr. Thomas

Camera Pose: R and tfrom E

Process
\bullet SVD.
$\bullet=U D V^{T}=\left[\begin{array}{lll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{3}\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}\boldsymbol{v}_{1}^{T} \\ \boldsymbol{v}_{2}^{T} \\ \boldsymbol{v}_{3}^{T}\end{array}\right], ~$

- Then, $\quad R \in\left\{U W V^{T}, U W^{T} V^{T}\right\}$

$$
\boldsymbol{t}= \pm \lambda \boldsymbol{u}_{3} ; \lambda \in \mathbb{R} \backslash 0
$$

- Where

$$
W=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

How to choose the right \mathbf{R}, \mathbf{t} ?
All 3D points should be in front of both cameras

Cheriality Condition: Finding the right \mathbf{R} and \mathbf{t}

- Pose options: $\left(R_{1}, t_{1}\right),\left(R_{2}, t_{2}\right),\left(R_{3}, t_{3}\right),\left(R_{4}, t_{4}\right)$
- Triangulate 3D points:
- Standard linear/nonlinear algorithms
- Count the number of points in front of both cameras
- Select the pose
- With the most number of points (in $+Z$ direction)

Cheriality Condition:

A 3D point \mathbf{x} is in front ($+Z$ side) of the camera $(R=[r 1, r 2, r 3], t)$
if

$$
r 3^{\top}(x-C)=r 3^{\top}\left(x+R^{\top} t\right)>0
$$

Triangulation: u (2D) to X (3D)

$$
P_{L}=\left[\begin{array}{ll}
\mathbf{1} & \mathbf{0}
\end{array}\right] \text { and } P_{R}=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

$\left[\begin{array}{l}u \\ 1\end{array}\right] \times P_{L}\left[\begin{array}{l}X \\ 1\end{array}\right]=0$
$\left[\begin{array}{l}U \\ 1\end{array}\right]_{X} P_{L}\left[\begin{array}{l}X \\ 1\end{array}\right]=0$
$\left[\begin{array}{c}v \\ 1\end{array}\right] \times P_{R}\left[\begin{array}{l}X \\ 1\end{array}\right]=0$
$\left[\begin{array}{l}\mathrm{V} \\ 1\end{array}\right]_{\times} P_{R}$
Solve for
X

SfM: Structure from Motion

SfM: Estimation of 3D structures from 2D image sequences.

1. 2 D feature detection in images: SIFT, ORB, FAST, etc.
2. Feature matching across viewpoints: KNN and ratio test
3. Estimating \mathbf{F} from matched features: (u, v) pairs
4. Estimating E from $F: E=K^{\top} F K$
5. Finding \mathbf{R}, \mathbf{t} from \mathbf{E} : triangulation and Cheriality condition
6. Finding projection matrices: $\mathbf{P}_{\mathrm{L}}, \mathbf{P}_{\mathrm{R}}$
7. Triangulating all 3D points
8. PnP and nonlinear refinement
9. Bundle Adjustment (BA)

Two-view SfM: HH3-C

Corresponding epipolar lines drawn on the two images

Two-view SfM: HH3-C

SIFT feature matches before ratio test (bonus part)

SIFT feature matches after ratio test (bonus part)

Two-view SfM: HH3-C

Complete the provided SfM pipeline template to do the following:

- Visualizing the four prospective camera poses and corresponding triangulated point cloud
- Selection of the correct camera poses and 3D triangulation
- Visualization of the reconstructed scene

Please check the HH3 pdf and blank code template in canvas!

Pointers: SfM and 3D Computer Vision

Recommended course materials

- Prof. Mubarak Shah (UCF):
- Lecture videos
- Course materials
- Prof. Hyun Soo Park (UMN):
- Course materials
- Prof. James Hays (Brown)
- Course materials
- Other resources
- SfM by field robots (3D surveys)
- Bundle adjustment
- CMSC426 notes

Coming Next...

- Visual odometry
- Motion tracking and filtering by mobile robots
- Active planning and control
- SLAM: Simultaneous Localization and Mapping

