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State Estimation and Filtering

EEL 4930/5934: Autonomous Robots

State Estimation
● A state is the collection of all aspects about a robot 

and the environment that we need to track
○ Robot pose and motion information
○ Positions of: landmarks, static obstacles
○ Motion estimates of dynamic obstacles

● State is represented by a vector (numerically)
○ Used for planning and control
○ Tracked and updated regularly

What is Filtering?
● State estimation of dynamic systems from a series 

of noisy sensory measurements
● Examples: 

○ Kalman filters (EF, EKF, UKF)
○ Particle filters
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Perception–Planning–Control 
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Pipeline Example: autonomous target following by mobile robots
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The SLAM Problem
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⇒ Given:

● The robots controls

● The measurements / observations

⇒ Wanted: 

● The environment map

● The robot pose 

SLAM: Simultaneous Localization and Mapping
● Estimating robot pose and mapping the 

environment simultaneously

● We briefly covered: 
○ Visual SLAM 
○ LiDAR-based SLAM
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Probabilistic Representation

EEL 4930/5934: Autonomous Robots

“The robot is 

exactly here”

“The robot is 

somewhere here”

distribution path map given observations controls
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Graphical Representation
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unknown

observed

unknown

 Dr. Cyrill Stachniss 
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http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/


Full SLAM vs Online SLAM
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⇒ Full SLAM estimates the entire pose (state)

⇒ Online SLAM estimates the most recent pose  (state)

Ref: Probabilistic Robotics (Chapter 7, 10)
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Graphical Model: Online SLAM
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Motion and Observation Model
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Motion Model
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distribution new pose given old pose control

Robot motion ‘rules’ given current state & control input
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Motion Model Examples

EEL 4930/5934: Autonomous Robots

⇒ Gaussian model

⇒ Non-Gaussian model
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Odometry Model: 2D Robots
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⇒ Robot moves from               to

⇒ Odometry information
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Observation (Sensor) Model
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distribution given poseobservation

Beliefs of sensor measurements given robot’s state
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State Estimation: Bayesian Filter
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Bayes Rule
p(x)   =  Prior probability distribution
p(z)   =  Measurement data distribution
p(x|z) =  Posterior probability distribution

Problem formulation
● Belief = Possible state
● xt = State (numerical vector)
● zt = Measurement data (from sensors)
● ut = Control input (from user / autopilot)

Set bel( xt ) at time t=0

For t = 1, 2, ... 

● Predict current belief

● Update belief based on sensory observation
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Set bel( xt ) at time t=0

For t = 1, 2, ... 

● Predict current belief

● Update belief based on sensory observation

State Estimation: Bayesian Filter
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Problem formulation
● belief = Possible state
● xt = State (numerical vector)
● zt = Measurement data (from sensors)
● ut = Control input (from user / autopilot)

Dr. Allen 
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http://www.cs.columbia.edu/~allen/teach.html


KF Assumptions: 

● A linear state transition model

● A linear observation model

● Zero mean Gaussian noise

State Estimation: Kalman Filter
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Kalman Filter (KF)
● A Bayes filter
● Gives optimal solution for linear models and 

for Gaussian distributions
● Popular versions:

○ Extended Kalman Filter (EKF)
○ Unscented Kalman Filter (UKF)

2D

KF assumes a 
Gaussian world!
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Gaussian Distributions

EEL 4930/5934: Autonomous Robots

Multivariate Gaussian: p(x | μ, Σ)

● x = n dimensional state vector
● μ = n dimensional mean vector

μ = E[x] 

● Σ = n x n covariance matrix
Σ = E[ (x-μ)(x-μ)T ] 

1D Gaussian: p(x | μ, σ2)
● x = 1D scalar
● μ = 1D mean
● σ2 = variance
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KF Assumptions: 

● A linear state transition model

● A linear observation model

● Zero mean Gaussian noise model

○ Qt describes the process/motion noise

○ Rt describes the measurement noise 

Kalman Filtering
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Ref: Probabilistic Robotics (Chapter 2, 3)

Ft

Bt

Ht

Qt Rt 
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Kalman Filter Algorithm
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Derivation: Probabilistic Robotics (Ch 3.2)

Predict or 
Propagate

Update or 
Correct

Predict / Propagate

Update / Correct
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Simple Derivation: 1D KF 

MAP (maximum a 
posteriori) estimate

x = state value;       p( x ) ~ N ( μx , σx
2)

z = measurement;   p( z | x ) ~ N ( x , σz
2)

Optimal 
State = 

Weight: 
Kalman gain!

Measurement 
residual

Current belief: 
The mean

*
+

The Kalman gain determines how much your 
estimate needs to change given a measurement

- How erroneous is your process?
- How erroneous is your measurement? 
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Example #1: 1D KF 
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General KF 

Predict or 
Propagate

Update or 
Correct
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MAP vs MLE Estimation 

MAP (maximum a 
posteriori) estimate

x = state value;       p( x ) ~ N ( μx , σx
2)

z = measurement;   p( z | x ) ~ N ( x , σz
2)

Finds the Kalman 
solution!

MLE (maximum likelihood estimator) ?

Finds the least 
squared solution!
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Example #2: Bounding Box Tracker 
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x_c, y_c = (x + w/2), (y + h/2)

x0, y0 = im_width/2, im_height/2 

offset_yaw = (x_c - x0)/im_width

offset_pitch = (y_c - y0)/im_height

(x, y)

h

w
yaw_angle ∝ offset_yaw

pitch_angle ∝ offset_pitch

velocity_forward ∝ distance

Remember the BBox-reactive Yaw-Pitch Controller!

Detector gives BBox: (x, y, w, h)
- How to formulate the state, control, and transition relationships?
- How to design a KF-based tracker for this? 
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BBox Tracker
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The state vector Assume constant velocity!

we can only measure the coordinates!

Process covariance Qt=?

Observation covariance Rt=? 

Homework 5C/5D

x = dot(F, x_state)

P = dot(F, P).dot(F.T) + Q

y = z - dot(H, x) # residual

S = dot(H, P).dot(H.T) + R

K = dot(P, H.T).dot(inv(S)) # gain

x = x + dot(K, y)

P = P - dot(K, H).dot(P)# update P_t

x_state = x.astype(int) # update x_t

Predict

Update

No control 
inputs ut
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BBox Tracker
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x = dot(F, x_state)

P = dot(F, P).dot(F.T) + Q

y = z - dot(H, x) # residual

S = dot(H, P).dot(H.T) + R

K = dot(P, H.T).dot(inv(S)) # gain

x = x + dot(K, y)

P = P - dot(K, H).dot(P)# update P_t

x_state = x.astype(int) # update x_t

Predict

Update
BBox Object 
detector

BBox reactive 
controller

[x, y, w, h]

KF Tracker

AutoPilot

[x, y, w, h]
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Non-linear Dynamic Systems
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⇒ Most realistic problems (in robotics) involve nonlinear functions

⇒ The non-linear functions lead to non-Gaussian distributions

⇒ The non-linear functions lead to non-Gaussian distributions

Solution: 
Non-linear versions 

● Extended KF (EKF)
● Iterative EKF

Jacobian matrices
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What is a Jacobian?
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Jacobian J: 

● Consider a function f : Rn → Rm

● Then J is an m x n matrix of gradients!

● Each entry represents a partial derivative: slope of the 

surface along that direction

● See: https://www.rosroboticslearning.com/jacobian 

28

https://www.rosroboticslearning.com/jacobian


Extended Kalman Filter 
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Derivation: Probabilistic Robotics (Ch 3.3)

Predict or 
Propagate

Update or 
Correct
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State Estimation Filter vs Feedback Controller
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Pipeline Example: autonomous target following by mobile robots
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PID Controllers 
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u(t)

e(t)

● Proportional (P) Part: compensates for the error difference
● Derivative (D) Part: reacts for the change of error (restricts oscillation)
● Integral (I) Part: responds to the steady-state response 

Need to tune Kp, Ki, Kd  experimentally
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PID Controllers 
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u(t)

e(t)

https://youtu.be/XfAt6hNV8XM 

https://youtu.be/JFTJ2SS4xyA 

● Proportional (P) Part: compensates for the error difference
● Derivative (D) Part: reacts for the change of error (restricts oscillation)
● Integral (I) Part: responds to the steady-state response 

Need to tune Kp, Ki, Kd  experimentally
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Position Control vs Trajectory Control 
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● Perception module: uses sensory measurements for state estimation
● State estimation filters: smooths state estimation with noisy measurements
● Path planner: finds set-points for executing the robot’s goal
● Position and trajectory controllers: execute that goal  
● Feedback (PID) controllers: smooth the controller outputs

Why position controller and trajectory controller?
● With raw position control, the controller simply tries to go to the next setpoint 

○ Not smooth or consistent motion
○ Vulnerable to dynamic agents’ uncertainties

● A trajectory controller tunes the feedback gains more aggressively 
○ Reject disturbance while keeping smooth motion

Advanced topics for the ‘Robotics II’ course
● Designing a trajectory controller for self-driving car scenario
● Filtering and state estimation pipelines for

○ Search-and-rescue robot
○ Autonomous exploratory robot

● Multi-robot cooperative localization and task execution
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