Filtering & State Estimation

EEL 4930/5934: Autonomous Robots

Spring 2023

Md Jahidul Islam

Lecture 9

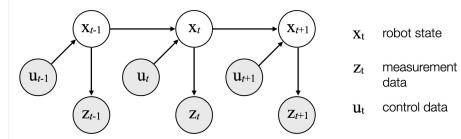
State Estimation and Filtering

State Estimation

- A state is the collection of all aspects about a robot and the environment that we need to track
 - Robot pose and motion information
 - Positions of: landmarks, static obstacles
 - Motion estimates of dynamic obstacles
- State is represented by a vector (numerically)
 - Used for planning and control
 - Tracked and updated regularly

What is Filtering?

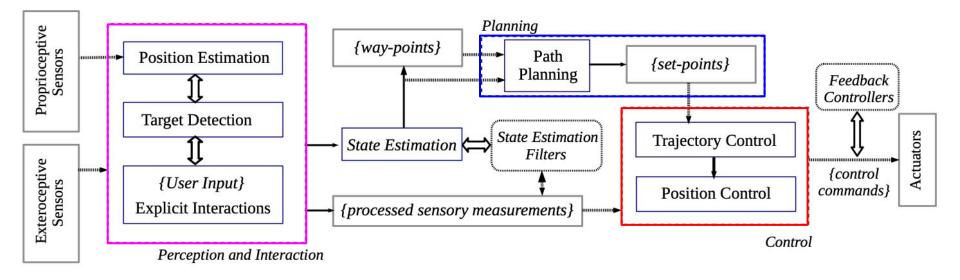
- State estimation of dynamic systems from a series of noisy sensory measurements
- Examples:
 - Kalman filters (EF, EKF, UKF)
 - Particle filters



2

FLORID

Perception–Planning–Control



<u>Pipeline Example:</u> autonomous target following by mobile robots

UF FLORIDA

3

The SLAM Problem

SLAM: Simultaneous Localization and Mapping

- Estimating robot pose and mapping the environment simultaneously
- We briefly covered:
 - Visual SLAM
 - LiDAR-based SLAM

⇒ Given:

- The robots controls $u_{1:T} = \{u_1, u_2, u_3 \dots, u_T\}$
- The measurements / observations $z_{1:T} = \{z_1, z_2, z_3 \dots, z_T\}$

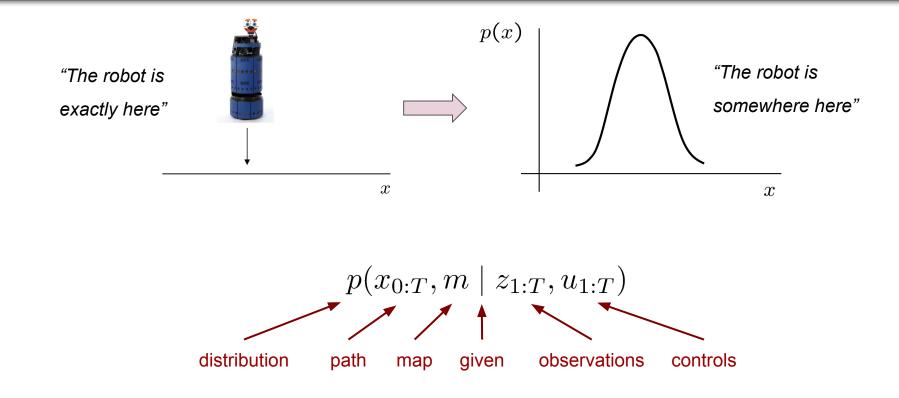
⇒ Wanted:

• The environment map

m

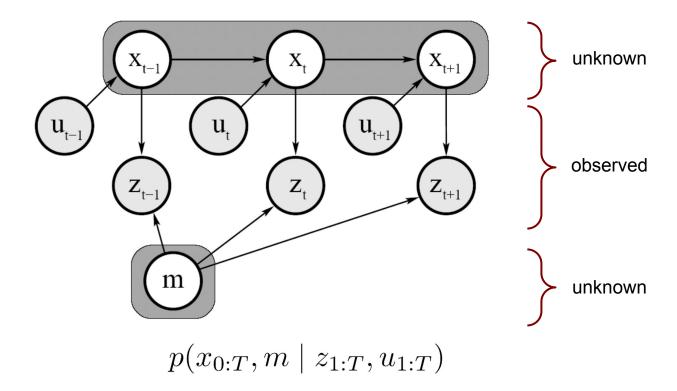
• The robot pose $x_{0:T} = \{x_0, x_1, x_2 \dots, x_T\}$

Probabilistic Representation



5

Graphical Representation



Dr. Cyrill Stachniss

6

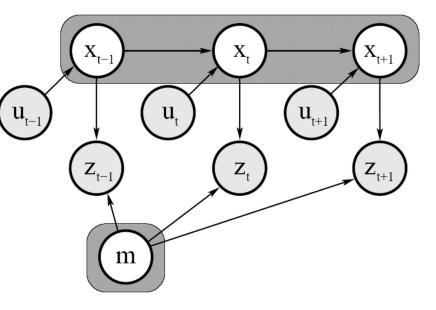
Full SLAM vs Online SLAM

⇒ Full SLAM estimates the entire pose (state)

 $p(x_{0:T}, m \mid z_{1:T}, u_{1:T})$

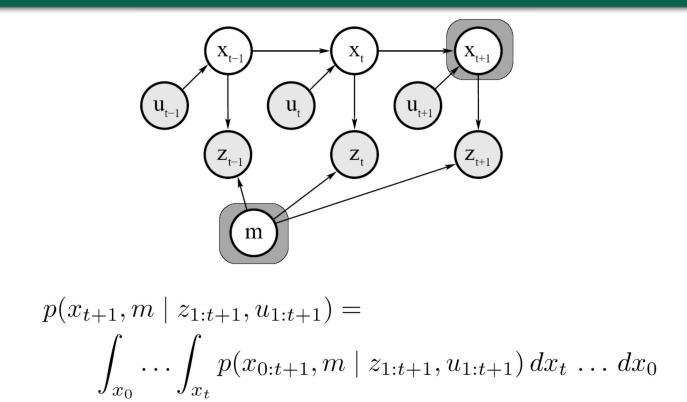
⇒ Online SLAM estimates the most recent pose (state)

 $p(x_t, m \mid z_{1:t}, u_{1:t})$



Ref: Probabilistic Robotics (Chapter 7, 10)

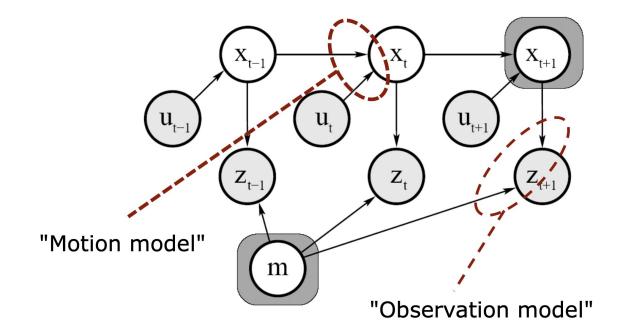
Graphical Model: Online SLAM



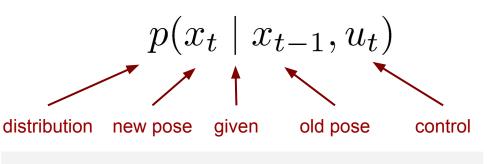
UF FLORIDA

8

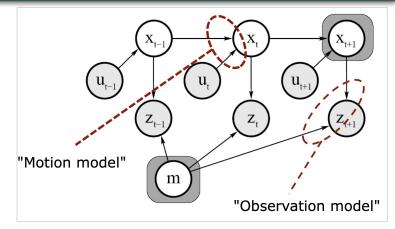
Motion and Observation Model



Motion Model



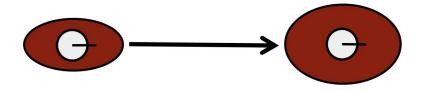
Robot motion 'rules' given current state & control input



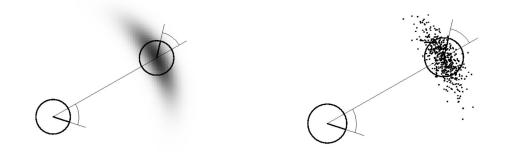
10

Motion Model Examples

⇒ Gaussian model



⇒ Non-Gaussian model



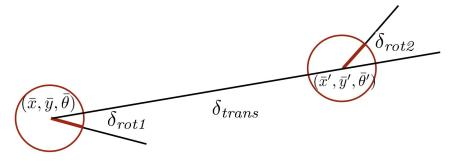
EEL 4930/5934: Autonomous Robots

11

Odometry Model: 2D Robots

 \Rightarrow Robot moves from $(\bar{x}, \bar{y}, \bar{\theta})$ to $(\bar{x}', \bar{y}', \bar{\theta}')$

 \Rightarrow Odometry information $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$



$$\delta_{trans} = \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2}$$

$$\delta_{rot1} = \operatorname{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$$

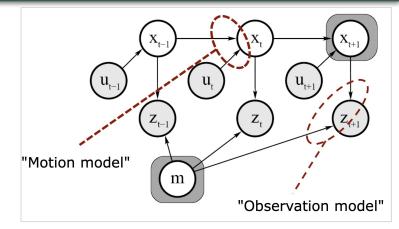
$$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$$

12

Observation (Sensor) Model

 $p(z_t \mid x_t)$ distribution observation given pose

Beliefs of sensor measurements given robot's state



13

State Estimation: Bayesian Filter

Problem formulation

- Belief = Possible state
- x_t = State (numerical vector)
- z_t = Measurement data (from sensors)
- *u_t* = Control input (from user / autopilot)

Set *bel(x_t)* at time t=0

For t = 1, 2, ...

• Predict current belief

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

• **Update** belief based on sensory observation

 $bel(x_t) = \eta \ p(z_t \mid x_t) \ \bar{bel}(x_{t-1})$

$$p(x|z) = \frac{p(z|x) p(x)}{p(z)} \propto p(z|x) p(x)$$

Bayes Rule

- p(x) = Prior probability distribution
- p(z) = Measurement data distribution
- p(x|z) = Posterior probability distribution

State Estimation: Bayesian Filter

Problem formulation

- belief = Possible state
- x_t = State (numerical vector)
- z_t = Measurement data (from sensors)
- *u_t* = Control input (from user / autopilot)

Set *bel*(x_t) at time t=0

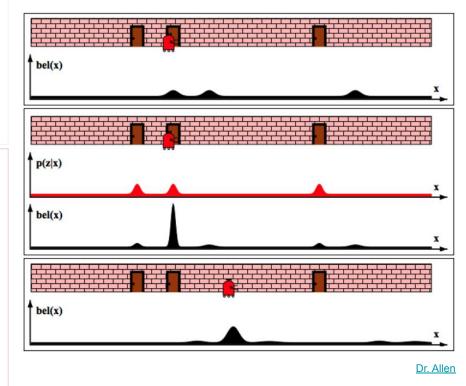
For t = 1, 2, ...

• Predict current belief

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

• **Update** belief based on sensory observation

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \bar{bel}(x_{t-1})$$



State Estimation: Kalman Filter

Kalman Filter (KF)

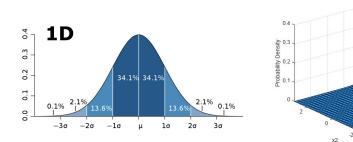
- A Bayes filter
- Gives optimal solution for linear models and for Gaussian distributions
- Popular versions:
 - Extended Kalman Filter (EKF)
 - Unscented Kalman Filter (UKF)

KF Assumptions:

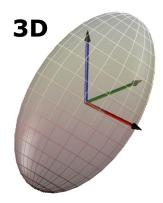
- A linear state transition model
 - $x_t = \mathbf{F}_t x_{t-1} + \mathbf{B}_t u_t + \epsilon_t$
- A linear observation model

 $z_t = \mathbf{H}_t x_t + \delta_t$

• Zero mean Gaussian noise

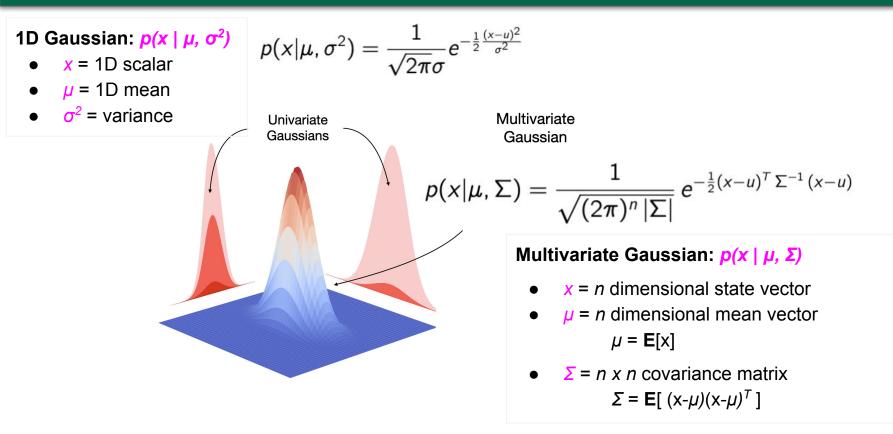


KF assumes a Gaussian world!



2D

Gaussian Distributions



17

Kalman Filtering

State transition:
$$x_t = \mathbf{F}_t x_{t-1} + \mathbf{B}_t u_t + \epsilon_t$$

Observation: $z_t = \mathbf{H}_t x_t + \delta_t$

KF Assumptions:

- A linear state transition model
- A linear observation model
- Zero mean Gaussian noise model
 - **Q**, describes the process/motion noise
 - *R*, describes the measurement noise

<u>Ref:</u> Probabilistic Robotics (Chapter 2, 3)

Matrix $(n \times n)$ that describes how the state evolves from t-1 to t without controls or noise.

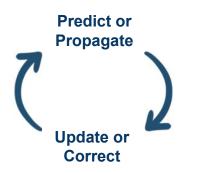
B_t Matrix $(n \times l)$ that describes how the control u_t changes the state from t-1 to t.

Matrix $(k \times n)$ that describes how to map the state x_t to an observation z_t .

Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance Q_t and R_t respectively.

Kalman Filter Algorithm

Predict / Propagate



Predict State: $x_t = \mathbf{F}_t x_{t-1} + \mathbf{B}_t u_t$ Predict covariance: $\mathbf{P}_t = \mathbf{F}_t \mathbf{P}_{t-1} \mathbf{F}_t^{\mathsf{T}} + \mathbf{Q}_t$

Update / Correct

Observation residual: $y_t = z_t - \mathbf{H}_t x_{t-1}$ Observation covariance: $\mathbf{S}_t = \mathbf{H}_t \mathbf{P}_{t-1} \mathbf{H}_t^T + \mathbf{R}_t$ Kalman gain: $\mathbf{K}_t = \mathbf{P}_t \mathbf{H}_{t-1}^T \mathbf{S}_t^{-1}$ Update state: $x_t = x_t + \mathbf{K}_t y_t$ Update covariance: $\mathbf{P}_t = (\mathbf{I}_t - \mathbf{K}_t \mathbf{H}_t) \mathbf{P}_t$

Derivation: Probabilistic Robotics (Ch 3.2)

Simple Derivation: 1D KF

$$p(x|z) = \frac{p(z|x) p(x)}{p(z)} \propto p(z|x) p(x)$$

X

x = state value; $p(x) \sim N(\mu_x, \sigma_x^2)$ z = measurement; $p(z | x) \sim N(x, \sigma_z^2)$

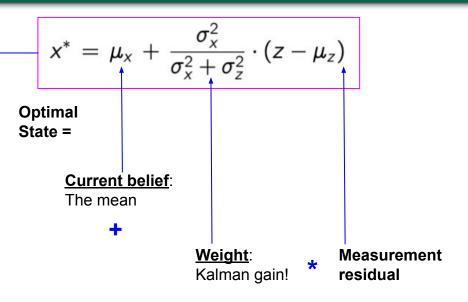
MAP (maximum a posteriori) estimate

$$p^* = \operatorname{argmax} p(x|z)$$

= argmax log $p(x|z)$

$$\begin{split} \log p(x|z) &= \log p(z|x) + \log p(x) - \log p(z) \\ &= \log \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \frac{(z-x)^2}{\sigma_z^2}} + \log \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \frac{(x-\mu_x)^2}{\sigma_x^2}} - \log p(z) \\ &= -\frac{1}{2} \frac{(z-x)^2}{\sigma_z^2} - \frac{1}{2} \frac{(x-\mu_x)^2}{\sigma_x^2} + constants \end{split}$$

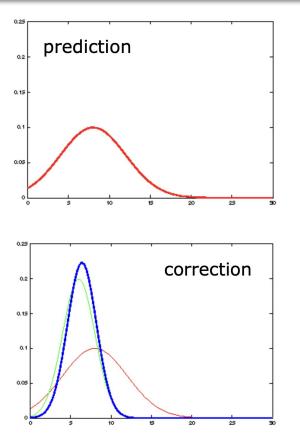
$$\frac{\partial \log p(x|z)}{\partial x} = 0 \rightarrow \frac{z - x}{\sigma_z^2} + \frac{x - \mu_x}{\sigma_x^2} = 0$$

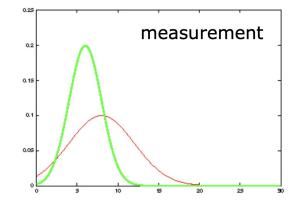


The **Kalman gain** determines how much your estimate needs to change given a measurement

- How erroneous is your process?
- How erroneous is your measurement?

Example #1: 1D KF



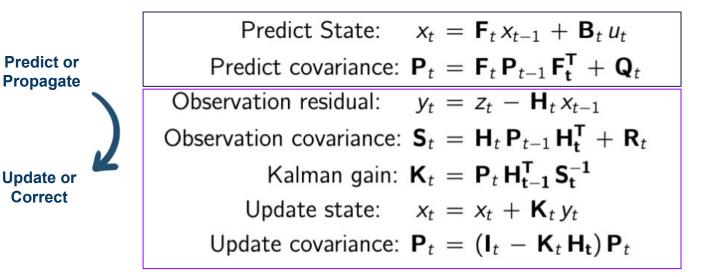


It's a weighted mean!

General KF

State transition:

 $x_t = \mathbf{F}_t x_{t-1} + \mathbf{B}_t u_t + \epsilon_t$ Observation: $z_t = \mathbf{H}_t x_t + \delta_t$



MAP vs MLE Estimation

$$p(x|z) = \frac{p(z|x) p(x)}{p(z)} \propto p(z|x) p(x)$$

x = state value; $p(x) \sim N(\mu_x, \sigma_x^2)$ z = measurement; $p(z \mid x) \sim N(x, \sigma_z^2)$

MAP (maximum a posteriori) estimate

$$x^* = \operatorname{argmax} p(x|z)$$

= argmax log $p(x|z)$

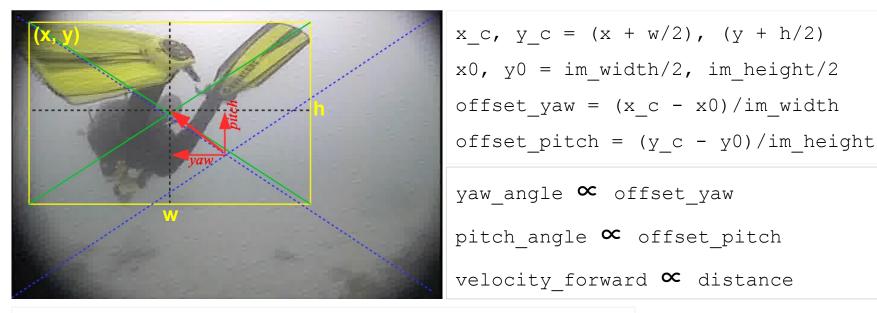
Finds the Kalman solution!

$$x^* = \mu_x + rac{\sigma_x^2}{\sigma_x^2 + \sigma_z^2} \cdot (z - \mu_z)$$

-2 MLE (maximum likelihood estimator) $x^* = \operatorname{argmax} p(z|x)$ $= \operatorname{argmin} \sum (z_i - x)^2$ $p(z|x) = p(z_1, z_2, \cdots, z_t|x)$ $= p(z_1|x) \cdot p(z_2|x) \cdot p(z_3|x) \cdots p(z_t|x)$ $=\prod_{i}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\frac{(z_{i}-x)^{2}}{\sigma_{z}^{2}}}$ $= (\frac{1}{2\pi\sigma^2})^{|t|/2} \cdot e^{-\frac{\sum_i (z_i - x)^2}{2\sigma_2^2}}$ Finds the least squared solution! $x^* = \operatorname{argmin} \sum (z_i - x)^2$

Example #2: Bounding Box Tracker

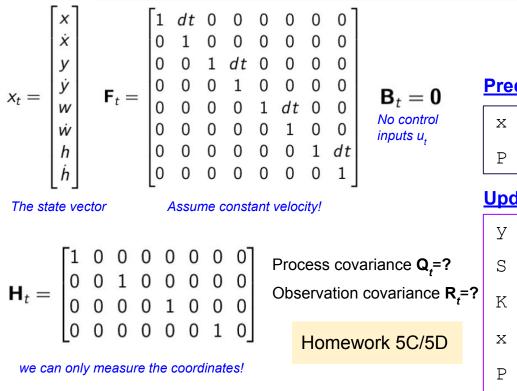
Remember the BBox-reactive Yaw-Pitch Controller!



Detector gives BBox: (x, y, w, h)

- How to formulate the state, control, and transition relationships?
- How to design a KF-based tracker for this?

BBox Tracker



State transition: $x_t = \mathbf{F}_t x_{t-1} + \epsilon_t$ Observation: $z_t = \mathbf{H}_t x_t + \delta_t$

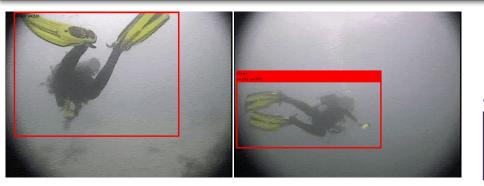
Predict

x = dot(F,	x_state)
P = dot(F,	P).dot(F.T) + Q

Update

y = z - dot(H, x) # residualS = dot(H, P).dot(H.T) + RK = dot(P, H.T).dot(inv(S)) # gainx = x + dot(K, y)P = P - dot(K, H).dot(P) # update P tx state = x.astype(int) # update x t

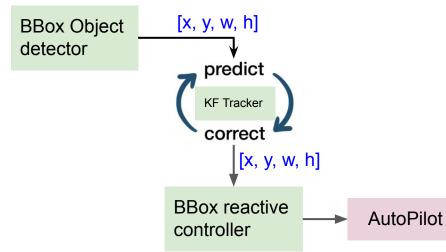
BBox Tracker



State transition: $x_t = \mathbf{F}_t x_{t-1} + \epsilon_t$ Observation: $z_t = \mathbf{H}_t x_t + \delta_t$

Predict

x = dot(F)	x_state)
P = dot(F,	P).dot(F.T) + Q



Update

y = z - dot(H, x) # residual		
S = dot(H, P).dot(H.T) + R		
K = dot(P, H.T).dot(inv(S)) # gain		
x = x + dot(K, y)		
$P = P - dot(K, H).dot(P) # update P_t$		
<pre>x_state = x.astype(int) # update x_t</pre>		

Non-linear Dynamic Systems

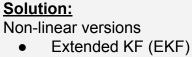
 \Rightarrow Most realistic problems (in robotics) involve nonlinear functions

- \Rightarrow The non-linear functions lead to non-Gaussian distributions
- \Rightarrow The non-linear functions lead to non-Gaussian distributions

$$x_{t} = \mathbf{F}_{t} x_{t-1} + \mathbf{B}_{t} u_{t} + \epsilon_{t}$$

$$\downarrow \downarrow$$

$$x_{t} = g(u_{t}, x_{t-1}) + \epsilon_{t}$$



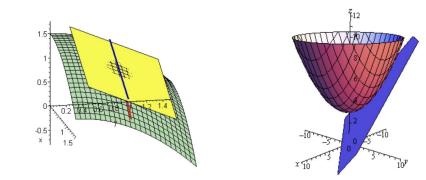
$$z_t = \mathbf{H}_t x_t + \delta_t$$
$$\bigcup$$
$$z_t = h(x_t) + \delta_t$$

 $\Omega 1 \left(- \right)$

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \underbrace{\frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}}}_{=: G_t} (x_{t-1} - \mu_{t-1}) \qquad h(x_t) \approx h(\bar{\mu}_t) + \underbrace{\frac{\partial h(\mu_t)}{\partial x_t}}_{=: H_t} (x_t - \bar{\mu}_t)$$
Jacobian matrices

What is a Jacobian?

$$f(x_1, x_2, \dots, x_n) = (f_1, f_2, \dots, f_m)$$
$$J_f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$



Jacobian J:

- Consider a function $f : \mathbb{R}^n \to \mathbb{R}^m$
- Then **J** is an *m x n* matrix of gradients!
- Each entry represents a partial derivative: slope of the surface along that direction
- See: <u>https://www.rosroboticslearning.com/jacobian</u>

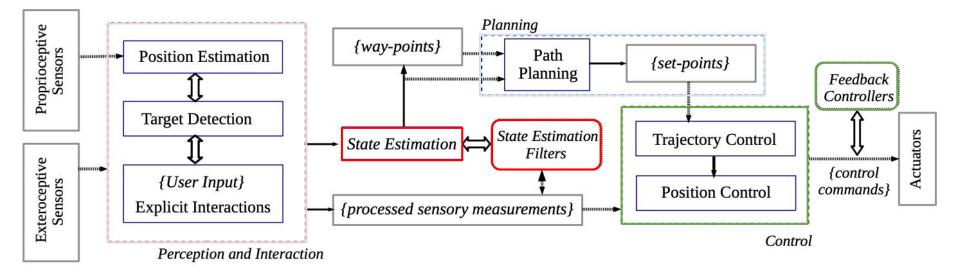
Extended Kalman Filter

State transition: $x_t = \mathbf{f}(x_t, u_t) + \epsilon_t$ Predict State: $x_t = \mathbf{f}(x_t, u_t)$ Observation: $z_t = \mathbf{h}(x_t) + \delta_t$ Predict covariance: $\mathbf{F}_t = \nabla_x \mathbf{f}(x_t, u_t)$ $\mathbf{G}_t = \nabla_\epsilon \mathbf{f}(\mathbf{x}_t, u_t)$ Predict or $\mathbf{P}_t = \mathbf{F}_t \mathbf{P}_{t-1} \mathbf{F}_t^{\mathsf{T}} + \mathbf{Q}_t$ Propagate Observation residual: $y_t = z_t - \mathbf{h}(x_t)$ Observation covariance: $\mathbf{H}_t = \nabla_x \mathbf{h}(x_t)$ Update or $\mathbf{S}_t = \mathbf{H}_t \mathbf{P}_{t-1} \mathbf{H}_t^{\mathsf{T}} + \mathbf{R}_t$ Correct Kalman gain: $\mathbf{K}_t = \mathbf{P}_t \mathbf{H}_{t-1}^{\mathsf{T}} \mathbf{S}_t^{-1}$ Update state: $x_t = x_t + \mathbf{K}_t y_t$ Update covariance: $\mathbf{P}_t = (\mathbf{I}_t - \mathbf{K}_t \mathbf{H}_t) \mathbf{P}_t$

Derivation: Probabilistic Robotics (Ch 3.3)

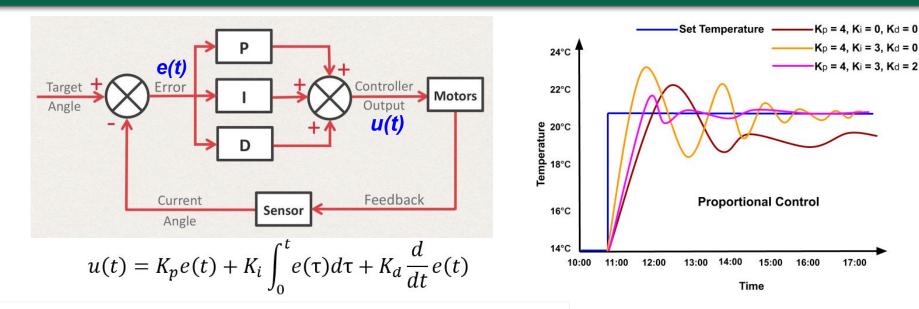
29 **UF** |UNIVERSITY of FLORIDA

State Estimation Filter vs Feedback Controller



<u>Pipeline Example:</u> autonomous target following by mobile robots

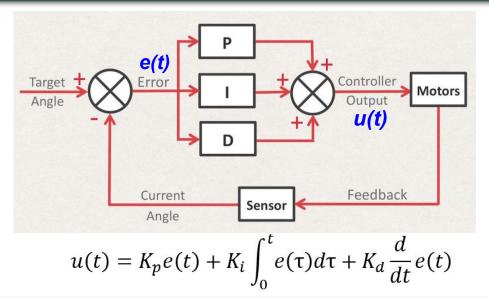
PID Controllers



- Proportional (P) Part: compensates for the error difference
- **Derivative (D) Part**: reacts for the change of error (restricts oscillation)
- Integral (I) Part: responds to the steady-state response

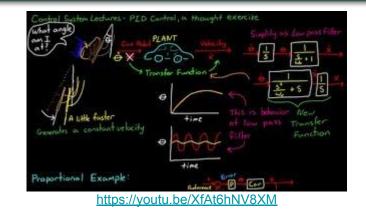
Need to tune K_{p} , K_{i} , K_{d} experimentally

PID Controllers



- Proportional (P) Part: compensates for the error difference
- Derivative (D) Part: reacts for the change of error (restricts oscillation)
- Integral (I) Part: responds to the steady-state response

Need to tune K_{p} , K_{i} , K_{d} experimentally



https://youtu.be/JFTJ2SS4xyA

Position Control vs Trajectory Control

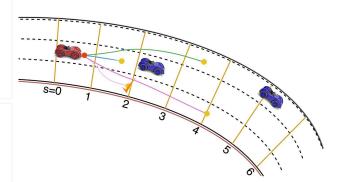
- **Perception module**: uses sensory measurements for state estimation
- **State estimation filters**: smooths state estimation with noisy measurements
- **Path planner**: finds set-points for executing the robot's goal
- Position and trajectory controllers: execute that goal
- Feedback (PID) controllers: smooth the controller outputs

Why position controller and trajectory controller?

- With raw position control, the controller simply tries to go to the next setpoint
 - Not smooth or consistent motion
 - Vulnerable to dynamic agents' uncertainties
- A trajectory controller tunes the feedback gains more aggressively
 - Reject disturbance while keeping smooth motion

Advanced topics for the 'Robotics II' course

- Designing a trajectory controller for self-driving car scenario
- Filtering and state estimation pipelines for
 - Search-and-rescue robot
 - Autonomous exploratory robot
- Multi-robot cooperative localization and task execution



33