
Filtering & State Estimation
EEL 4930/5934: Autonomous Robots

Spring 2023

Md Jahidul Islam

Lecture 9

State Estimation and Filtering

EEL 4930/5934: Autonomous Robots

State Estimation
● A state is the collection of all aspects about a robot

and the environment that we need to track
○ Robot pose and motion information
○ Positions of: landmarks, static obstacles
○ Motion estimates of dynamic obstacles

● State is represented by a vector (numerically)
○ Used for planning and control
○ Tracked and updated regularly

What is Filtering?
● State estimation of dynamic systems from a series

of noisy sensory measurements
● Examples:

○ Kalman filters (EF, EKF, UKF)
○ Particle filters

2

Perception–Planning–Control

EEL 4930/5934: Autonomous Robots

Pipeline Example: autonomous target following by mobile robots

3

The SLAM Problem

EEL 4930/5934: Autonomous Robots

⇒ Given:

● The robots controls

● The measurements / observations

⇒ Wanted:

● The environment map

● The robot pose

SLAM: Simultaneous Localization and Mapping
● Estimating robot pose and mapping the

environment simultaneously

● We briefly covered:
○ Visual SLAM
○ LiDAR-based SLAM

4

Probabilistic Representation

EEL 4930/5934: Autonomous Robots

“The robot is

exactly here”

“The robot is

somewhere here”

distribution path map given observations controls

5

Graphical Representation

EEL 4930/5934: Autonomous Robots

unknown

observed

unknown

 Dr. Cyrill Stachniss

6

http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/

Full SLAM vs Online SLAM

EEL 4930/5934: Autonomous Robots

⇒ Full SLAM estimates the entire pose (state)

⇒ Online SLAM estimates the most recent pose (state)

Ref: Probabilistic Robotics (Chapter 7, 10)

7

Graphical Model: Online SLAM

EEL 4930/5934: Autonomous Robots

8

Motion and Observation Model

EEL 4930/5934: Autonomous Robots

9

Motion Model

EEL 4930/5934: Autonomous Robots

distribution new pose given old pose control

Robot motion ‘rules’ given current state & control input

10

Motion Model Examples

EEL 4930/5934: Autonomous Robots

⇒ Gaussian model

⇒ Non-Gaussian model

11

Odometry Model: 2D Robots

EEL 4930/5934: Autonomous Robots

⇒ Robot moves from to

⇒ Odometry information

12

Observation (Sensor) Model

EEL 4930/5934: Autonomous Robots

distribution given poseobservation

Beliefs of sensor measurements given robot’s state

13

State Estimation: Bayesian Filter

EEL 4930/5934: Autonomous Robots

Bayes Rule
p(x) = Prior probability distribution
p(z) = Measurement data distribution
p(x|z) = Posterior probability distribution

Problem formulation
● Belief = Possible state
● xt = State (numerical vector)
● zt = Measurement data (from sensors)
● ut = Control input (from user / autopilot)

Set bel(xt) at time t=0

For t = 1, 2, ...

● Predict current belief

● Update belief based on sensory observation

14

Set bel(xt) at time t=0

For t = 1, 2, ...

● Predict current belief

● Update belief based on sensory observation

State Estimation: Bayesian Filter

EEL 4930/5934: Autonomous Robots

Problem formulation
● belief = Possible state
● xt = State (numerical vector)
● zt = Measurement data (from sensors)
● ut = Control input (from user / autopilot)

Dr. Allen

15

http://www.cs.columbia.edu/~allen/teach.html

KF Assumptions:

● A linear state transition model

● A linear observation model

● Zero mean Gaussian noise

State Estimation: Kalman Filter

EEL 4930/5934: Autonomous Robots

Kalman Filter (KF)
● A Bayes filter
● Gives optimal solution for linear models and

for Gaussian distributions
● Popular versions:

○ Extended Kalman Filter (EKF)
○ Unscented Kalman Filter (UKF)

2D

KF assumes a
Gaussian world!

16

Gaussian Distributions

EEL 4930/5934: Autonomous Robots

Multivariate Gaussian: p(x | μ, Σ)

● x = n dimensional state vector
● μ = n dimensional mean vector

μ = E[x]

● Σ = n x n covariance matrix
Σ = E[(x-μ)(x-μ)T]

1D Gaussian: p(x | μ, σ2)
● x = 1D scalar
● μ = 1D mean
● σ2 = variance

17

KF Assumptions:

● A linear state transition model

● A linear observation model

● Zero mean Gaussian noise model

○ Qt describes the process/motion noise

○ Rt describes the measurement noise

Kalman Filtering

EEL 4930/5934: Autonomous Robots

Ref: Probabilistic Robotics (Chapter 2, 3)

Ft

Bt

Ht

Qt Rt

18

Kalman Filter Algorithm

EEL 4930/5934: Autonomous Robots

Derivation: Probabilistic Robotics (Ch 3.2)

Predict or
Propagate

Update or
Correct

Predict / Propagate

Update / Correct

19

EEL 4930/5934: Autonomous Robots

Simple Derivation: 1D KF

MAP (maximum a
posteriori) estimate

x = state value; p(x) ~ N (μx , σx
2)

z = measurement; p(z | x) ~ N (x , σz
2)

Optimal
State =

Weight:
Kalman gain!

Measurement
residual

Current belief:
The mean

*
+

The Kalman gain determines how much your
estimate needs to change given a measurement

- How erroneous is your process?
- How erroneous is your measurement?

20

Example #1: 1D KF

EEL 4930/5934: Autonomous Robots

21

EEL 4930/5934: Autonomous Robots

General KF

Predict or
Propagate

Update or
Correct

22

EEL 4930/5934: Autonomous Robots

MAP vs MLE Estimation

MAP (maximum a
posteriori) estimate

x = state value; p(x) ~ N (μx , σx
2)

z = measurement; p(z | x) ~ N (x , σz
2)

Finds the Kalman
solution!

MLE (maximum likelihood estimator) ?

Finds the least
squared solution!

23

Example #2: Bounding Box Tracker

EEL 4930/5934: Autonomous Robots

x_c, y_c = (x + w/2), (y + h/2)

x0, y0 = im_width/2, im_height/2

offset_yaw = (x_c - x0)/im_width

offset_pitch = (y_c - y0)/im_height

(x, y)

h

w
yaw_angle ∝ offset_yaw

pitch_angle ∝ offset_pitch

velocity_forward ∝ distance

Remember the BBox-reactive Yaw-Pitch Controller!

Detector gives BBox: (x, y, w, h)
- How to formulate the state, control, and transition relationships?
- How to design a KF-based tracker for this?

24

BBox Tracker

EEL 4930/5934: Autonomous Robots

The state vector Assume constant velocity!

we can only measure the coordinates!

Process covariance Qt=?

Observation covariance Rt=?

Homework 5C/5D

x = dot(F, x_state)

P = dot(F, P).dot(F.T) + Q

y = z - dot(H, x) # residual

S = dot(H, P).dot(H.T) + R

K = dot(P, H.T).dot(inv(S)) # gain

x = x + dot(K, y)

P = P - dot(K, H).dot(P)# update P_t

x_state = x.astype(int) # update x_t

Predict

Update

No control
inputs ut

25

BBox Tracker

EEL 4930/5934: Autonomous Robots

x = dot(F, x_state)

P = dot(F, P).dot(F.T) + Q

y = z - dot(H, x) # residual

S = dot(H, P).dot(H.T) + R

K = dot(P, H.T).dot(inv(S)) # gain

x = x + dot(K, y)

P = P - dot(K, H).dot(P)# update P_t

x_state = x.astype(int) # update x_t

Predict

Update
BBox Object
detector

BBox reactive
controller

[x, y, w, h]

KF Tracker

AutoPilot

[x, y, w, h]

26

Non-linear Dynamic Systems

EEL 4930/5934: Autonomous Robots

⇒ Most realistic problems (in robotics) involve nonlinear functions

⇒ The non-linear functions lead to non-Gaussian distributions

⇒ The non-linear functions lead to non-Gaussian distributions

Solution:
Non-linear versions

● Extended KF (EKF)
● Iterative EKF

Jacobian matrices
27

What is a Jacobian?

EEL 4930/5934: Autonomous Robots

Jacobian J:

● Consider a function f : Rn → Rm

● Then J is an m x n matrix of gradients!

● Each entry represents a partial derivative: slope of the

surface along that direction

● See: https://www.rosroboticslearning.com/jacobian

28

https://www.rosroboticslearning.com/jacobian

Extended Kalman Filter

EEL 4930/5934: Autonomous Robots

Derivation: Probabilistic Robotics (Ch 3.3)

Predict or
Propagate

Update or
Correct

29

State Estimation Filter vs Feedback Controller

EEL 4930/5934: Autonomous Robots

Pipeline Example: autonomous target following by mobile robots

30

PID Controllers

EEL 4930/5934: Autonomous Robots

u(t)

e(t)

● Proportional (P) Part: compensates for the error difference
● Derivative (D) Part: reacts for the change of error (restricts oscillation)
● Integral (I) Part: responds to the steady-state response

Need to tune Kp, Ki, Kd experimentally

31

PID Controllers

EEL 4930/5934: Autonomous Robots

u(t)

e(t)

https://youtu.be/XfAt6hNV8XM

https://youtu.be/JFTJ2SS4xyA

● Proportional (P) Part: compensates for the error difference
● Derivative (D) Part: reacts for the change of error (restricts oscillation)
● Integral (I) Part: responds to the steady-state response

Need to tune Kp, Ki, Kd experimentally

32

http://www.youtube.com/watch?v=XfAt6hNV8XM
https://youtu.be/XfAt6hNV8XM
http://www.youtube.com/watch?v=JFTJ2SS4xyA
https://youtu.be/JFTJ2SS4xyA

Position Control vs Trajectory Control

EEL 4930/5934: Autonomous Robots

● Perception module: uses sensory measurements for state estimation
● State estimation filters: smooths state estimation with noisy measurements
● Path planner: finds set-points for executing the robot’s goal
● Position and trajectory controllers: execute that goal
● Feedback (PID) controllers: smooth the controller outputs

Why position controller and trajectory controller?
● With raw position control, the controller simply tries to go to the next setpoint

○ Not smooth or consistent motion
○ Vulnerable to dynamic agents’ uncertainties

● A trajectory controller tunes the feedback gains more aggressively
○ Reject disturbance while keeping smooth motion

Advanced topics for the ‘Robotics II’ course
● Designing a trajectory controller for self-driving car scenario
● Filtering and state estimation pipelines for

○ Search-and-rescue robot
○ Autonomous exploratory robot

● Multi-robot cooperative localization and task execution
33

