Getting Started With ROS2 and TurtleBot4

Presenter: Adnan Abdullah PhD Student Dept. Of ECE, UF

Outline

- ROS1 vs ROS2
 - Package
 - Workspace
 - Build
 - \circ Node
 - Launch file
 - ROS master
 - \circ API

- ROS2 with TurtleBot
 - Prepare your pc
 - Configure Raspberry Pi
 - Configure Create 3
 - \circ How to connect
 - \circ Example
 - Keyboard control (TeleOp)
 - Navigation and SLAM

Creating a Package

ROS 1

- First, create a package withcatkin_create_pkg
- Then add any Cpp/Python file.

adnana@ece-p206a-virgo: ~/catk... Q ≡ _ □
 adnana@ece-p206a-virgo: ~ \$ cd ~/catkin_ws/src
 adnana@ece-p206a-virgo: ~ /catkin_ws/src
 catkin_create_pkg
my_face_detection rospy cv_bridge sensor_msgs
Created file my_face_detection/package.xml
Created file my_face_detection/CMakeLists.txt
Created folder my_face_detection/src
Successfully created files in /home/adnana/catkin_ws/src/m
y_face_detection. Please adjust the values in package.xml.
adnana@ece-p206a-virgo: ~ /catkin_ws/src

ROS 2

• When creating the package, specify one build

type: ament_cmake or ament_python.

Workspace

ECE Florida

Building a package

ROS 1

 catkin_make or catkin_build to build and install packages.

ROS 2

- Ament is the new building system.
- On top of that, there is colcon command line tool.
- To compile, use colcon build

ECE Florida

Writing a Node

ROS 1

• Class is not necessary.

```
import rospy # Python library for ROS
     from sensor msgs.msg import Image
     from cv bridge import CvBridge
     import cv2
     def publish message():
       pub = rospy.Publisher('video frames', Image, queue size=10)
      rospy.init node('video pub py', anonymous=True)
       rate = rospy.Rate(10) # 10hz
       cap = cv2.VideoCapture(0)
       br = CvBridge()
16
17
       while not rospy.is shutdown():
           ret, frame = cap.read()
           if ret == True:
             rospy.loginfo('publishing video frame')
             pub.publish(br.cv2 to imgmsg(frame))
           rate.sleep()
24
     if name == ' main ':
       try:
         publish message()
       except rospy.ROSInterruptException:
         pass
```

ROS 2

• Create a class, all ROS2 functionalities will be

in this class.

Launch File

ROS 1

- .launch XML file
- roslaunch

my_face_detection face_detection.la

unch

Electrical & Computer Engineering

ROS 2

- .py Python script
- ros2 launch my_face_detection face_

detection_launch.py

0	pen ▾ FT _{~/U} Face_detection_launch.py Save ≡ _ □ 😣						
1 f	rom launch import LaunchDescription						
2 f	2 from launch ros.actions import Node						
3 i	mport os						
4 f	<pre>rom ament_index_python.packages import get_package_share_directory</pre>						
5							
6 d	<pre>ef generate_launch_description():</pre>						
7	<pre>usb_cam_dir = get_package_share_directory('usb_cam')</pre>						
8	params_path = os.path.join(
9	usb_cam_dir,						
10	'config', 'params.yaml'						
11)						
12	return LaunchDescription([
13	Node(
14	<pre>package='usb_cam', executable='usb_cam_node_exe',</pre>						
0	utput='screen',						
15	name='usb_cam',						
16	# namespace=ns,						
17	parameters=[params_path]						
18),						
19	Node (
20	package='my_tace_detection',						
21	executable='face_detector',						
22	#name=						
23	Nodo (
24	Node						
25	executable 'rat image view'						
27	pame-"rat image view"						
28	hand- rdt_chage_vcew						
29])						

UF FLORIDA

ROS Master

ROS 1

- Start a ROS master before running a node.
- roscore then rosrun

F	roscore http://ece-p206a-virgo:11311/		×			
adnana@ece-p206a-virgo:~\$ roscore logging to /home/adnama/.ros/log/54e53290-b2fc-11ed-93c3-a79447eccd7a/roslau nch-ece-p206a-virgo-128016.log Checking log directory for disk usage. This may take a while. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB.						
started roslaunch server http://ece-p206a-virgo:41951/						
ros_comm version 1.15.15						
F	adnana@ece-p206a-virgo: ~	Q ≡	- 🛛 🔕			
adnana@ece-p206a-virgo:~\$ [INFO] [1677103256.40820] [INFO] [1677103256.409764 544445], theta=[0.000000]	rosrun turtlesim turtlesim_node 132]: Starting turtlesim with r 4860]: Spawning turtle [turtle1]	ode name / at x=[5.54	turtlesim 44445], y=[5.			

ROS 2

- No more ROS master! Each node has the capacity to discover other nodes.
- ros2 run

ROS Master

Parameters

ROS 1

 Parameters are handled by the parameter server, which is itself handled by the ROS master.

ROS 2

- No master, so no global parameter anymore.
- Each parameter is specific to a node.

ROS 1

- roscpp and rospy
- Both libraries are completely independent and built from scratch.
- Some features are developed for one, and not the other.

ROS 2

- One base library- rcl, implemented in C. Foundation for all ROS2 core features.
- We use another client library built on top of rcl- rclcpp or rclpy.

<pre>import rclpy # Python Client Library for ROS 2</pre>
<pre>from rclpy.node import Node # Handles the creation of nodes</pre>
<pre>from sensor_msgs.msg import Image</pre>
from cv bridge import CvBridge
import cv2
class ImagePublisher(Node):
<pre>definit(self):</pre>

ECE | Florida

Let's do some ROS2 with Turtlebot!

Getting Familiar...

- Two versions- Turtlebot4 Standard and Turtlebot4 Lite
- Two computers- Raspberry Pi and Create 3
- Two sensors- LiDar and the Oak D camera (Oak D pro / Oak-D-lite)

ECE | Florida

Prepare your PC to get connected (Just Once)

• Download an xml file using this command:

wget https://raw.githubusercontent.com/turtlebot/turtlebot4_setup/galactic/conf/cyclonedds_pc.xml

- Find your WiFi network interface name with this command:
 - ip link (The name would be something like- wlp0s20f3)
- Open the xml file with gedit and add the following line below <DontRoute>true</DontRoute> this line:

<NetworkInterfaceAddress>"your wifi interface name"</NetworkInterfaceAddress>

• Move and export it with the following commands:

```
sudo mv cyclonedds pc.xml /etc/
export CYCLONEDDS_URI=/etc/cyclonedds_pc.xml
source ~/.bashrc
```

Install necessary packages on your pc:

sudo apt install ros-galactic-teleop-twist-keyboard sudo apt-get install ros-galactic-turtlebot4-viz sudo apt-get install ros-galactic-turtlebot4-navigation

Configure Raspberry Pi WiFi (Just Once)

- Place the bot on the charging doc. It will turn on.
- Connect your pc to the WiFi called Turtlebot4. Password is Turtlebot4 by default.
- Once connected, ssh into Raspberry Pi from your pc by running this command:

ssh ubuntu@10.42.0.1

 In /usr/local/bin folder of Raspberry Pi there is a script called wifi.sh. Edit it to connect the Raspberry Pi to your home WiFi:

sudo wifi.sh -s '<your WIFI SSID>' -p '<your WIFI_PASSWORD>' -r

<REGULATORY_DOMAIN> && sudo reboot

The Regulatory Domain is based on the country you live in (For USA: US).

• Once it is rebooted, run the following command on your pc to see Raspberry Pi's IP:

ros2 topic echo /ip

You should see the ip printed on a regular interval.

To connect to a new network: ssh into Raspberry Pi while connected on current network and use command:

sudo wifi.sh -s '<new SSID>' -p '<new PASSWORD>' -a **&&** sudo reboot

Configure Connect3 WiFi (Just Once)

- Press the two buttons surrounding the home button at the same time, the light ring will flash, wait until it turns blue.
- Connect your pc to the WiFi network called Create-XXXX.
- In a browser go to 192.168.10.1
- Go to the Connect tab, enter your WiFi SSID and password, and then click 'Connect'. Once connected, the Turtlebot will play a chime.
- Check to make sure the create 3 is publishing topics by running ros2 topic list on your

ne	Connect	Update	Logs	Application		About
					Connect Robot to Wi-Fi	
					IP Address: 192.168.1.179	
					For detailed instructions, wish <u>edu induct convicrente3 setup</u> .	
					Update Robot Names	
					Host name (ROS Users): IRobot-CEB3AE39F2494CB88	
					Bluetooth name: Create3	
					(Please note all fields are case-sensitive.)	
					Update	
					Connect to a 2.4 GHz Wi-Fi Network	
					Type your Wi-Fi network name:	
					Wi-Fi Password:	
					Optional: additional radio bands are available for certain regions:	
					Re-Scan Networks Connect	
					Delta i r . J Unus a superioral Contact us at adjustion@irobat.com	

pc.

ECE | Florida

Electrical & Computer Engineering

Follow this <u>link</u> for more info.

Let's Get Connected... (Everytime you start the bot)

- Place the bot on the charging doc. It will turn on.
- There will be two chimes-
 - The first indicates that Raspberry Pi is ready and
 - The second indicates that Create3 is ready.
- To find the ip address of Raspberry Pi, run on your pc:

ros2 topic echo /ip

 Connect to Raspberry Pi via ssh, run on your pc:

ssh ubuntu@192.168.x.xxx

Г	ubuntu@ubuntu: ~	Q	= -		8		
adnana@ece-p206-lnx02:~\$ ssh ubuntu@192.168.0.123 ubuntu@192.168.0.123's password: Welcome to Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-1080-raspi aarch64)							
<pre>* Documentation: * Management: * Support:</pre>	https://help.ubuntu.com https://landscape.canonical.com https://ubuntu.com/advantage						
System informatio	on disabled due to load higher than 4	.0					
* Strictly confined Kubernetes makes edge and IoT secure. Learn how MicroK8s just raised the bar for easy, resilient and secure K8s cluster deployment.							
https://ubuntu.	com/engage/secure-kubernetes-at-the-	edge					
316 updates can be To see these addit	applied immediately. ional updates run: apt listupgrad	able					
New release '22.04.1 LTS' available. Run 'do-release-upgrade' to upgrade to it.							
Last login: Wed Feb 22 22:52:41 2023 from 192.168.0.233 ubuntu@ubuntu:•\$							

Time to show some move!

• In a new terminal on your pc, run:

ros2 run

teleop_twist_keyboard

teleop twist keyboard

 You should be able to move your bot with keyboard.

Mapping with SLAM and RViz

• In a new terminal on your pc run:

ros2 launch turtlebot4_navigation
slam_sync.launch.py

• In another terminal run:

ros2 launch turtlebot4_viz

view_robot.launch.py

• Move your bot and it will create a map of the surrounding.

ECE | Florida

Thank you!

Questions? Comments?

