Background: OS and RTOS

EEL 4745C: Microprocessor Applications |l
Fall 2022

Md Jahidul Islam

Lecture 4

: UNIVERSITY
scam = UF | F1 ORIDA

Topics and Outline

OS Concepts and RTOS adaptations % P—
Task Switching

e Programs and processes it

(Latency)

o Threads in multi-threaded systems | 7
e Scheduling algorithms and implementaton | __-=""

e Inter-process communication

e Synchronization and resource sharing

v

Number of tasks Scheduled (systemload)

Reference and acknowledgements

e Book: Operating System Concepts (Ninth Edition) By A. Silberschatz, P. Galvin, and G. Gagne
e Course:
o Operating Systems By Dr. Steven Hand at University of Cambridge
o An introduction to RTOS and Schedulability Analysis By Marco Di Natale Scuola Superiore S. Anna

2

UNIVERSITY af

EEL 4745C: Microprocessor Applications I UF‘FLORIDA

Processes (aka Jobs)

e An operating system executes a variety of programs:

o Batch system — jobs / processes ITIEX
o Time-shared systems — user programs or tasks SIS
e Process — a program in execution l

e Multiple parts

o The program code, also called text section

o Current activity: PC (program counter), processor registers

o Stack containing temporary data oap
= Function parameters, return addresses, local variables data

o Data section containing global variables

o Heap containing memory dynamically allocated during run time text

3

EEL 4745C: Microprocessor Applications I UF|UFY‘8zliIiBIf\

Program vs Process vs Threads

e Program is a passive entity stored on disk (executable files) ~| [~ Z
. . I Q] o o e o | &
e Process is active [<
e Program becomes process when it is loaded into memory :
Operating System
e Execution of program started via T
o GUI or mouse clicks, command line calls, etc. | Hardware
o Interrupts or calls by other programs!
Job 4 Job 4 Job 4
e One program can be several processes
Job 3 Job 3 Job 3
e Each process can have multiple threads
. Job 2 Job 2 Job 2
o Athread is the basic unit to which OS allocates processor time
Job 1 Job 1 Job 1
o Each process is started with a primary thread Operating Operating Operating
System System System
o But can create additional threads from any of its threads. TG >
4
EEE temmeteee EEL 4745C: Microprocessor Applications |l UF ' FL.ORIDA

Process States

e As a process executes, it changes state | data | [ies |
° OS iS reSponSible for COOI’dination l registers | | stack l | registers || registers || registers |
o Multi-threaded scheduling & execution | cick [sk I sk |
| code |

R

e Process states

o new: The process is being created

threaded

o running: Instructions are being executed

o waiting: The process is waiting for some admitted interrupt exit terminated

event to occur

o ready: The process is waiting to be
assigned to a processor

o terminated: The process has finished
execution

scheduler dispatch

I/O or event completion I/O or event wait

5

UNIVERSITY of

EEE temmeteee EEL 4745C: Microprocessor Applications I UF|FLORIDA

Process Creation

A parent process can create many new processes via system calls
e System call to create process: fork ()
e Each child process may in-turn create new child process

e Every process gets a unique process identifier: PID

How the child process gets its resources?

: e OS can create some
l e The parent process can allocate some
U, SO, . status
l """" Address space of child processes
parent e Gets an exact copy of the parents address space

e Whatis ‘copy-on-write’?

6

EEE temmeteee EEL 4745C: Microprocessor Applications I UF|”F”118‘13‘fbA

Process Termination

parent A process termination can occur in many ways

e Normal termination — A process finishes executing its final
statement: exit () . All the resources allocated to it are freed by
the operating system.

e Forced Termination — a parent process can terminate its child
process by invoking the system call: abort () .

e This can happen due to the following reasons:
o Child exceeds its usage of resources
o Task assigned to the child is no longer required

o Parent exits; OS does not allow child to run if parent
terminates, child is then handled by the init_process.

o User can also forcefully terminate a process: kil1 ()

® If no parent waiting (didn’t invoke wait ()), process is: zombie

e [f parent terminated without invoking wait , process is: orphan

7

UNIVERSITY of

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Logistics

= Lab-2 demo and quiz-1 starts today
e Different problems, but similar difficulty level
e Oneofthree (3x5=195)

= Lab-1 grades are out (since Monday)

e Grades are final after 1 week of posting

= Lab-3 manual and code template are out

e Go over the files and functions (specially the new IPC library and
periodic thread functions)

e Read the manual carefully and thoroughly

8

UNIVERSITY of

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Zombie vs Orphan Process

e When a child process terminates before the parent invokes wait ()
o It needs to signal its parents about its exit: using SIGCHLD
o Then the parent calls wait () and clears it from process table
o During this step the child process is a zombie or defunct

A process that has completed its task while no parent is waiting
on it, but still shows an entry in the process table

o ltis called an orphan

o Orphan processes are handled by the init_process, which
performs the wait () call so that the orphans processes can die

>> See this stackoverflow discussion.

9

EEL 4745C: Microprocessor Applications I UF|UFY‘8zﬁiBIf\

https://stackoverflow.com/questions/20688982/zombie-process-vs-orphan-process

PCB: Process Control Block

% PCB Holds information associated with each process

e Process state

e Program counter

| Thread l Thread I Thread .

P e CPU registers
Thread Thread Thread TR :
Cgl':)tcfl‘(" control Il controt I comes e CPU scheduling information
block block block o Priorities, scheduling queue pointers
Process . .
i e Memory-management information
=Rece o Memory allocated to the process

e Accounting information
o CPU used, clock time elapsed since start, time limits

e |/O status information

Kernel
stack o 1/O devices allocated to process, list of opened files

10

EEE oot EEL 4745C: Microprocessor Applications I UF|”F'}16'ii‘fbA

Control Blocks: PCB and TCB
Process i Thread ID
Starting Address Task Parameters
Task Type

Thread Context
. > Phase
| Thread . Thread I Thread Scheduling Period
Pneees Information Relative Deadline
control Thread Thread Thread S)"I“L;‘h)"_on";[:“)“o” Number of Instances
bloek: control [||| control || || control il Event List
block block block ITI ;}10 Usage
nformation
apa?if‘eezz Timer Information
space Other Information

PCB 3 PCB 3 PCB

\’ TCB TCB

TCB

> TCB

TCB TCB
1

UF |FLORIDA

Department of Electrical . . . o
£ Carmpuir Erghesing EEL 4745C: Microprocessor Applications I

EEeE

Process-to-Process Transition

process P, operating system process P,

interrupt or system call

executing ll /
A 4

save state into PCB,

idle

reload state from PCB, 1
ridle interrupt or system call executing

[¥

save state into PCB;

idle

reload state from PCB,

executing | _'¥
\ 4

EEL 4745C: Microprocessor Applications I UF|UFY‘8inliB;\

12

Process Scheduling

EEeE

Ready Queue

release

Wait Queue(s)

timeout or yield

—
event-wait

create creafe -=--=-re-tesrestesressessessessecseseeseaoee-

(batch) (interactive)

e Maximizes CPU use for time sharing

e Maintains scheduling queues of processes

(0]

(o]

Department of Electrical
& Computer Engineering

Job queue — set of all processes in the system

Ready queue — set of all processes residing in main memory, ready and waiting to execute

Device queues — set of processes waiting for an I/O device

Processes migrate among the various queues

EEL 4745C: Microprocessor Applications I

UF

13

UNIVERSITY af

FLORIDA

Scheduling: Process vs Thread

e Scheduling a process means making the threads within the process candidates for scheduling
e Scheduling a thread means resuming it

e Suspending a process means suspending all the threads within the process.

e Suspending a thread means suspending its execution

admitted interrupt

scheduler dispatch

I/0 or event completion I/O or event wait

Blocked

Process States Thread States

14

.—E B °fE'e“"i‘:°g EEL 4745C: Microprocessor Applications |1 UF\UFNILV(SKISﬁ]YDGA

Context Switching: PCB and TCB

Ready queue Context
Switch

Timer
interrupt

e When CPU switches to another process
o OS must save the state of the old process and load the saved state for the new process

e Context of a process represented in the PCB

e Context-switch time is overhead; the system does no useful work while switching

e Context switching between process and threads uses the same philosophy
o Thread context switching (saving and loading new TCBs) are obvious much faster

15

EEL 4745C: Microprocessor Applications I UF|UFY‘8zliIiBIf\

IPC: Inter-Process Communication

e Processes within a system may be independent or cooperating
e Cooperating process can affect or be affected by other processes, including sharing data
e Reasons for cooperating processes:
o Information sharing
o Computation speedup, Modularity
o Cooperating processes need interprocess communication (IPC)
e Two models of IPC
o Shared memory
m Need synchronization
o Message passing
m send (P, message) —send a message to process P

m receive (Q, message) —receive a message from process Q

EEL 4745C: Microprocessor Applications I

UF

16

UNIVERSITY af

FLORIDA

Synchronization: Message Passing

e Message passing may be either blocking or non-blocking
e Blocking is considered synchronous
- Blocking send -- the sender is blocked until the message is received
o Blocking receive -- the receiver is blocked until a message is available

e Non-blocking is considered asynchronous
> Non-blocking send -- the sender sends the message and continue
> Non-blocking receive -- the receiver receives:
= Avalid message, or

= Null message

e Different combinations possible

o If both send and receive are blocking, we have a rendezvous

17

EEL 4745C: Microprocessor Applications I UF|UFY‘8zﬁfBA

Synchronization: Resource Sharing

EEeE

Shared memory communication

o Simplest model and the closest to the machine
o all threads can access the same memory locations

Critical Section

o Parts of the code where the problem may happen
o A sequence of operations that cannot be interleaved

Resource: shared object where the conflict may happen

Two critical sections on the same resource must be properly

sequentialized, ie, must execute in mutual exclusion

o General solution: semaphores!

Department of Electrical
& Computer Engineering

Thread

Shared memory

Thread
or ISR
Thread
or ISR

EEL 4745C: Microprocessor Applications I

acquire
release

Semaphore

#0

Thread
or ISR

#1

#2

#3

Thread

#4

or ISR

#5

shared resource

18

UF |FLORIDA

Synchronization: Semaphores

= Software-based thread synchronization

e Synchronization with just a shared integer ~ semaphore

e Proposed by Edsger Dijkstra

e Types:
o Counting semaphores (when N units of resources available)
o Binary semaphores (guarantees mutual exclusiveness)

Acquire (value =0)

Available Unavailable

Initial
value =0

Initial
value =1

Release (value = 1)

EEL 4745C: Microprocessor Applications I

wait (S) {
while S <=0
; // no-op
5=
)
signal (S) {
St+;

¥

UF

19

UNIVERSITY af

FLORIDA

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Semaphore: General Implementation

typedef struct {
<blocked queue> blocked;
int counter;

} sem_t;

void sem_init (sem_t &s, int n);

void sem_wait

void sem_post

(sem_t &s);
(sem_t &s);

sem_ts;
/

sem_init(&s, 1);

void *threadA(void *arg)
{

sem_wait(&s);
<critical section>
sem_post(&s);

void *threadB(void *arg)
{

sem_wait(&s);
<critical section>
sem_post(&s);

EEL 4745C: Microprocessor Applications I

void sem_init (sem_t *s, int n)

{

s->count=n;

}...

void sem_wait(sem_t *s)
i
if (counter == 0)
<block the thread>
else
counter--;

}

void sem_post(sem_t *s)
{
if (<there are blocked threads>)
<unblock a thread>
else
counter++;

)

UF

20

UNIVERSITY of

FLORIDA

RTOS Adaptation

Scheduling and Synchronization

IIIIIIIIIII

EEL 4745C: Microprocessor Applications I UF |[FLORIDA

RTS: Real-time Systems

e Correctness of the system depends on Fsef“l“ess
o Logical results of computation
o Time at which the results are produced

e Tasks need to complete before a deadline : Soft Real-Time

|]
+ Firm

o System is at fault otherwise; task not completing Hard Real-Time | 'Real-Time

before deadline is a scheduling failure

Deadline for all three cases

e For timing guarantee, system must be predictable

o Upper bound suffices for most cases

1
|I|||Il||||?l||llr W
-

Real-Time Operating Systems

22

RTS Deadlines: Soft vs Firm vs Hard

A

soft real-time

Value/
Usefulness

deadline

e Examples

“ time

Value/
Usefulness

o Hard deadline: traffic controllers

o Soft/Firm deadline: background

downloads, games, and multimedia

N

firm real-time

Value/
Usefulness

> ..
time

deadline

hard real-time
N

> ..
-time

deadline

e Various types of tasks in RTS/RTOS

o Time: periodic vs aperiodic vs sporadic

o Interrupt: preemptive vs non-preemptive

o Priority/compile-time:

static vs dynamic

23

Scheduling Algorithms

> We will explore:

RT scheduling

4/\

e Soft scheduling

o RR: Round-robin scheduling

Soft Hard
/\ e Hard (real-time) scheduling
Dynamic Static o Rate Monotonic scheduler
Z><L o Deadline Monotonic scheduler
Preemptive Non-preemptive

> Other important/famous algorithms: see here

24

https://en.wikipedia.org/wiki/Scheduling_(computing)

Round-robin Scheduling

= Each job gets equal CPU time - no priority:
e Circular queue

e Fair but inefficient

Given:

e Circular list of tasks task_list of size N

e Number of scheduling ticks: t
schedule:

® current = task list[t]

e t=(t + 1) mod N

7 80 0 30

T, 40 8 10
T3 100 0 15

e [fthe one CPU quantum is 5 ticks, can you track

the time-process horizon? (aka Gantt chart)

e Comment of CPU Efficiency!

25

Digressing: CPU-I/O Burst Cycles

e Maximum CPU utilization obtained with multiprogramming .
e CPU-I/O Burst Cycle — Process execution consists of a load store
. . add store CPU burs
cycle of CPU execution and I/O wait read from file
e CPU burst followed by I/O burst wall for IO /O burst
store increment
index CPU burs
write to file
A
wait for I/O /O burst
Q
5
S load store
g add store CPU burs
lt read from file
2 ‘ 6 8 10 12 14 15 wait for I/O /O burst
CPU Burst Duration (ms) .

L]
° 26

Back: Round-robin Scheduling

m One CPU Quantum:

30

5 ticks
> 40 8 10
s 100 0 15

Run Queue at T=0: {t,, 73}

L T4, T3 arrive, scheduler picks 74 (73 is a valid option)

27

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
T2 40 8 10
s 100 0 15

Run Queue at T =5: {1, 73}

T, preempted, scheduler runs 753

28

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T=8: {14, 73,7,}

-

T, arrives, CPU quantum for 3 not expired

29

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T = 10: {74, 73,75}

I T3 preempted, scheduler picks 7,

30

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T = 15: {74, 73,73}

T, preempted, scheduler picks 7,

31

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
5 40 8 10
T3 100 0 15

Run Queue at T = 20: {74, 73,73}

T, preempted, scheduler picks 73

32

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
5 40 8 10
T3 100 0 15

Run Queue at T = 25: {74, 73,73}

T3 preempted, scheduler picks 7, t

33

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
T2 40 8 10
s 100 0 15

Run Queue at T =30: {74, 73}

T3 finishes, scheduler picks 7,

34

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
T2 40 8 10
s 100 0 15

Run Queue at T = 35: {74, 73}

7, preemted, scheduler picks7; 1

35

Round-robin Scheduling (Fast-forward)

m One CPU Quantum:

3
0 5 ticks
T, 40 8 10
T 100 0 15

Run Queue atT=65: 0

T1 (2 () Tq Ty 1 66 68 70 72 74 76 78

T, finishes, nothing to schedule

80 82 84 8 88 9 92 94 96 98 100 102 104 106 108 110 112 114 116 118

36

Round-robin Scheduling (Contd.)

W One CPU Quantum:
30 5 ticks

T, 40 8 10
T3 100 0 15

Run Queue at T = 80: {74}

T1 T1 Ty T1 Ty ~ (ldle, wasted cycles)
80 82 8 8 838 90 92 94 096 98 100 102 104 106 108 110 112 114 116 118

T, arrives, schedule it

37

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T = 88: {174, 7, }

T1 T1 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

I T, arrives, CPU quantum for 7; not expired

38

Round-robin Scheduling (Contd.)

m One CPU Quantum:

30

5 ticks
T, 40 8 10
T3 100 0 15

Run Queue at T = 100: {74, 75, T3}

T1 T2 (2 100 102 104 106 108 110 112 114 116 118

t T3 arrives, T, preempted, T, scheduled (3 is valid tc
39

CPU Utilization

T 80 0 30

T, 40 8 10
Ts 100 0 15
n
U - 30 10 N 15 o C;
80 20 T 100 0 E F

e CPUwas is idle 22.5% of the time!
e Criteria for a good scheduler:

o Max CPU utilization; Max throughput
o Min turnaround time; Min waiting time; Min response time

40

Other ‘Easy’ Scheduling Algorithms

P1 0 24
P1 P? P3
0 2 M) P2 4 3
e Waiting time for P1 =0; P2 =20; P3 =10 P3 17 3

e Average waiting time: (0 +20 + 10)/3 =10

P1 0 6

P, P, P, P,
0 3 9 1 6 2 P2 O 8
P3 0 7

e Average waitingtime=(3+16+9+0)/4=7
P4 0 3

41

Rate Monotonic Scheduler

= Real time priority scheduler

7 80 0 25

The task with the shortest period is

T, 50 0 10
scheduled first T3 100 0 15
Task is run until it finishes 25 10 15
—_— — — —— V)
U=g5+sot 100 = 66:25%

Running task can be preempted

o But need to be with higher priority CPU is idle 33.75% of the time.

Can you track the time-process horizon? (aka Gantt chart)

42

Rate Monotonic Scheduler

Task | period | Amival | BurstLength
7 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T=0: {74, T,, T3}

r T41,T, T3 arrive, T, has shortest period thus is scheduled

43

Rate Monotonic Scheduler

Task | period | Amival | BurstLength
T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T = 10: {74, 73}

I T, finishes, T; has shortest period thus is scheduled

44

Rate Monotonic Scheduler (Fast Forward)

Tk | raiod | Amival | Burstiangh
Ty 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T = 35: {7,}

(%) T1

cN Cn 7 Cc CQ cN cH CA (ol cQ N 79 =3 / = 7Q
50 52 54 56 58 60 62 64 66 68 70 /2 74 /6 /8

t 73 finishes, 7, arrives

& 2 8 86 88 0 92 |9 ={ 100 2 |1 106 108 110 12 114 116 118

45

Rate Monotonic Scheduler (Contd.)

T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T = 80: {7}

T, U
80 82 84 8 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

E__ T, arrives

46

Rate Monotonic Scheduler (Contd.)

T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T = 100: {74, 75, T3}

T, U

— T,, T3 arrive, T, has shorter period, preempt 7,

47

Rate Monotonic Scheduler (Contd.)

T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T = 110: {74, 73}

T, U

T1 T, 110 112 (114 116 118

T, finishes, T, has shorter period, resume 74 i

48

Rate Monotonic Scheduler (Contd.)

T 80 0 25

T, 50 0 10
T3 100 0 15

Run Queue at T = 115: {73}

T, U

7, finishes, schedule 5

49

Deadline Monotonic Scheduling

= Real time priority scheduler

e Also known as Earliest Deadline First
(EDF) scheduling

e The task with the earliest deadline is

scheduled first

o Important: pay attention to the

deadline in a given period
e Running task can be preempted

o But need to be with higher priority

T | oo | Amhal | oursteng
7 80 0 25
T, 50 0 10
T3 100 0 15
U =§+E+£= 66.25%
80 50 100

CPU is idle 33.75% of the time.

Can you track the time-process horizon?
(aka Gantt chart)

50

Deadline Monotonic Scheduling

Task | Period | Armival | BurstLlength
7 80 0 20

T, 50 0 25
T3 100 0 15

Task-1 deadline in this cycle: 80

Task-2 deadline in this cycle: 50
Task-3 deadline in this cycle: 100

Run Queue at T=0: {14, T2, T3}

| — T4, T, T3 arrive, T, earliest deadline so it is scheduled

51

Deadline Monotonic Scheduling (Contd.)
Task | Period | Armival | BurstLength_

T, 50 0 25
T3 100 0 15

Task-1 deadline in this cycle: 80

Task-3 deadline in this cycle: 100

Run Queue at T = 25: {74, 73}

(‘

T, finishes, 7, scheduled (deadline at 80)

52

Deadline Monotonic Scheduling (Contd.)

7 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T = 45: {73}

(¥

I 7, finishes, 73 scheduled (deadline at 100)

8 86 88 90 92

(o)

00
o
(00]
N

/-f‘-r 46 48 50 52 54 56 58 60 62 64 66 68

4 96 98 100 102 104 106 108

Task-3 deadline in this cycle: 100

110 1112 114 116 118

53

Deadline Monotonic Scheduling (Contd.)
Task | Period | Armival | BurstLength_
Ty 80 0 20

T2 50 0 25 Task-2 deadline in this cycle: 100
e 100 0 15

Task-3 deadline in this cycle: 100

Run Queue at T = 50: {73, 7,}

1
(-
92
N
Ui
(Up]

6 58 60 62 64 66 68 /0 72 74 76 78

A T, is ready, deadline at 100, 73 has same deadline, can stay

80 82 84 8 88 90 92 94 096 98 100 102 104 106 108 110 11:

N
I
}.—
B
P_
P._.\.\
(@)]
e
P_
0

54

Deadline Monotonic Scheduling (Contd.)
Task | Period | Armival | BurstLength_
Ty 80 0 20

t2 50 0 = Task-2 deadline in this cycle: 100
e 100 0 15

Run Queue at T = 60: {7,}

60 62 64 66 68 70 72 74 76 78
753 finishes, 7, scheduled (deadline at 100)
80 82 84 8 8 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118

55

Deadline Monotonic Scheduling (Contd.)
Task | Period | Armival | BurstLength_
Ty 80 0 20

t2 50 g = Task-2 deadline in this cycle: 100
e 100 0 15

Task-1 deadline in this cycle: 160

Run Queue at T = 80: {75, 71}

T2

71

80 82 84 86 88 90 92 94 096 98 100 102 104 106 108 110 112 114 116 118

T, arrives (deadline at 160), T, remains (deadline at 100)

56

Deadline Monotonic Scheduling (Contd.)
Task | Period | Armival | BurstLength_
Ty 80 0 20

- 50 0 25
T3 100 0 15

Run Queue at T = 85: {71}

4 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118
T, finishes, 7, scheduled (deadline at 160)

57

Deadline Monotonic Scheduling (Contd.)
Task | Period | Armival | BurstLength_
T 80 0 20

T, 50 0 25
T3 100 0 15

Run Queue at T = 100: {74, T, T3}

(¥

100 102 104 106 108 110 112 114 116 118

t T,, T3 arrive (150, 200), T, (160) preempted by 7,

58

Other Important OS Components

e File management and sharing

g
o Disk handler, meta-data handler TEES oRACLE
| @ A = (D)
o Database and file systems Sun IBM VMWare Apple Oracle
en
e Protection X / 'I . %
e Network access and security; hardware security - ‘,L'm; —
/) :-COT
® Memory management Red Hat Fec}ora CentOS Debian Ubuntu Mint
e Disk, memory access, and cache management Ol o A @ L 9

® ObjeCt management: Signaling and buffering SUSE Mageia ArchLinux Slackware Mandriva Gentoo
e Advanced scheduling and deadlock management " \uBS[) % (@

FreeBSD OpenBSD NetBSD DragonFly BSD Darwin

e 1/O management and interfacing

e On-board hardware and peripherals; external devices About 40-50 years of advanced literature.
Now we know where to start!

e Specialized OS: ROS - Robot Operating System

59

