
Background: OS and RTOS
EEL 4745C: Microprocessor Applications II

Fall 2022

Md Jahidul Islam

Lecture 4

Topics and Outline

2

EEL 4745C: Microprocessor Applications II

OS Concepts and RTOS adaptations

● Programs and processes
● Threads in multi-threaded systems
● Scheduling algorithms and implementation
● Inter-process communication
● Synchronization and resource sharing

Reference and acknowledgements

● Book: Operating System Concepts (Ninth Edition) By A. Silberschatz, P. Galvin, and G. Gagne
● Course:

○ Operating Systems By Dr. Steven Hand at University of Cambridge
○ An introduction to RTOS and Schedulability Analysis By Marco Di Natale Scuola Superiore S. Anna

Processes (aka Jobs)

3

EEL 4745C: Microprocessor Applications II

● An operating system executes a variety of programs:
○ Batch system – jobs / processes
○ Time-shared systems – user programs or tasks

● Process – a program in execution
● Multiple parts

○ The program code, also called text section
○ Current activity: PC (program counter), processor registers
○ Stack containing temporary data

■ Function parameters, return addresses, local variables
○ Data section containing global variables
○ Heap containing memory dynamically allocated during run time

Program vs Process vs Threads

4

EEL 4745C: Microprocessor Applications II

● Program is a passive entity stored on disk (executable files)
● Process is active

● Program becomes process when it is loaded into memory
● Execution of program started via

○ GUI or mouse clicks, command line calls, etc.
○ Interrupts or calls by other programs!

● One program can be several processes
● Each process can have multiple threads

○ A thread is the basic unit to which OS allocates processor time
○ Each process is started with a primary thread
○ But can create additional threads from any of its threads.

Process States

5

EEL 4745C: Microprocessor Applications II

● As a process executes, it changes state
● OS is responsible for coordination

○ Multi-threaded scheduling & execution

● Process states
○ new: The process is being created
○ running: Instructions are being executed
○ waiting: The process is waiting for some

event to occur
○ ready: The process is waiting to be

assigned to a processor
○ terminated: The process has finished

execution

Process Creation

6

EEL 4745C: Microprocessor Applications II

A parent process can create many new processes via system calls
● System call to create process: fork()
● Each child process may in-turn create new child process
● Every process gets a unique process identifier: PID

How the child process gets its resources?
● OS can create some
● The parent process can allocate some

Address space of child processes
● Gets an exact copy of the parents address space
● What is ‘copy-on-write’?

Process Termination

7

EEL 4745C: Microprocessor Applications II

A process termination can occur in many ways
● Normal termination – A process finishes executing its final

statement: exit(). All the resources allocated to it are freed by
the operating system.

● Forced Termination – a parent process can terminate its child
process by invoking the system call: abort().

● This can happen due to the following reasons:
○ Child exceeds its usage of resources
○ Task assigned to the child is no longer required
○ Parent exits; OS does not allow child to run if parent

terminates, child is then handled by the init_process.

○ User can also forcefully terminate a process: kill()

● If no parent waiting (didn’t invoke wait()), process is: zombie

● If parent terminated without invoking wait , process is: orphan

8

EEL 4745C: Microprocessor Applications II

Logistics
⇒ Lab-2 demo and quiz-1 starts today

● Different problems, but similar difficulty level

● One of three (3 x 5 = 15)

⇒ Lab-1 grades are out (since Monday)

● Grades are final after 1 week of posting

⇒ Lab-3 manual and code template are out

● Go over the files and functions (specially the new IPC library and

periodic thread functions)

● Read the manual carefully and thoroughly

Zombie vs Orphan Process

9

EEL 4745C: Microprocessor Applications II

● When a child process terminates before the parent invokes wait()
○ It needs to signal its parents about its exit: using SIGCHLD

○ Then the parent calls wait()and clears it from process table
○ During this step the child process is a zombie or defunct

A process that has completed its task while no parent is waiting
on it, but still shows an entry in the process table

● When a parent is terminated but the child process is still running

○ It is called an orphan
○ Orphan processes are handled by the init_process, which

performs the wait()call so that the orphans processes can die

>> See this stackoverflow discussion.

https://stackoverflow.com/questions/20688982/zombie-process-vs-orphan-process

PCB: Process Control Block

10

EEL 4745C: Microprocessor Applications II

PCB Holds information associated with each process
● Process state
● Program counter
● CPU registers
● CPU scheduling information

○ Priorities, scheduling queue pointers
● Memory-management information

○ Memory allocated to the process
● Accounting information

○ CPU used, clock time elapsed since start, time limits
● I/O status information

○ I/O devices allocated to process, list of opened files

Control Blocks: PCB and TCB

11

EEL 4745C: Microprocessor Applications II

Process-to-Process Transition

12

EEL 4745C: Microprocessor Applications II

Process Scheduling

13

EEL 4745C: Microprocessor Applications II

● Maximizes CPU use for time sharing
● Maintains scheduling queues of processes

○ Job queue – set of all processes in the system
○ Ready queue – set of all processes residing in main memory, ready and waiting to execute
○ Device queues – set of processes waiting for an I/O device
○ Processes migrate among the various queues

Scheduling: Process vs Thread

14

EEL 4745C: Microprocessor Applications II

● Scheduling a process means making the threads within the process candidates for scheduling

● Scheduling a thread means resuming it

● Suspending a process means suspending all the threads within the process.

● Suspending a thread means suspending its execution

Process States Thread States

Context Switching: PCB and TCB

15

EEL 4745C: Microprocessor Applications II

● When CPU switches to another process
○ OS must save the state of the old process and load the saved state for the new process

● Context of a process represented in the PCB
● Context-switch time is overhead; the system does no useful work while switching

● Context switching between process and threads uses the same philosophy

○ Thread context switching (saving and loading new TCBs) are obvious much faster

IPC: Inter-Process Communication

16

EEL 4745C: Microprocessor Applications II

● Processes within a system may be independent or cooperating
● Cooperating process can affect or be affected by other processes, including sharing data
● Reasons for cooperating processes:

○ Information sharing
○ Computation speedup, Modularity

● Cooperating processes need interprocess communication (IPC)
● Two models of IPC

○ Shared memory
■ Need synchronization

○ Message passing
■ send (P, message) – send a message to process P
■ receive(Q, message) – receive a message from process Q

Synchronization: Message Passing

17

EEL 4745C: Microprocessor Applications II

● Message passing may be either blocking or non-blocking
● Blocking is considered synchronous

○ Blocking send -- the sender is blocked until the message is received
○ Blocking receive -- the receiver is blocked until a message is available

● Non-blocking is considered asynchronous
○ Non-blocking send -- the sender sends the message and continue
○ Non-blocking receive -- the receiver receives:

■ A valid message, or
■ Null message

● Different combinations possible
○ If both send and receive are blocking, we have a rendezvous

Synchronization: Resource Sharing

18

EEL 4745C: Microprocessor Applications II

● Shared memory communication

○ Simplest model and the closest to the machine
○ all threads can access the same memory locations

● Critical Section

○ Parts of the code where the problem may happen

○ A sequence of operations that cannot be interleaved

● Resource: shared object where the conflict may happen

● Two critical sections on the same resource must be properly

sequentialized, ie, must execute in mutual exclusion

○ General solution: semaphores!

Synchronization: Semaphores

19

EEL 4745C: Microprocessor Applications II

⇒ Software-based thread synchronization

● Synchronization with just a shared integer ~ semaphore
● Proposed by Edsger Dijkstra
● Types:

○ Counting semaphores (when N units of resources available)
○ Binary semaphores (guarantees mutual exclusiveness)

P

V

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Semaphore: General Implementation

20

EEL 4745C: Microprocessor Applications II

EEL 4745C: Microprocessor Applications II

RTOS Adaptation

Scheduling and Synchronization

RTS: Real-time Systems
● Correctness of the system depends on

○ Logical results of computation
○ Time at which the results are produced

● Tasks need to complete before a deadline

○ System is at fault otherwise; task not completing

before deadline is a scheduling failure

● For timing guarantee, system must be predictable

○ Upper bound suffices for most cases

22

RTS Deadlines: Soft vs Firm vs Hard

● Examples

○ Hard deadline: traffic controllers

○ Soft/Firm deadline: background

downloads, games, and multimedia

23

● Various types of tasks in RTS/RTOS

○ Time: periodic vs aperiodic vs sporadic

○ Interrupt: preemptive vs non-preemptive

○ Priority/compile-time: static vs dynamic

Scheduling Algorithms

24

RT scheduling

Soft Hard

Dynamic Static

Preemptive Non-preemptive

> We will explore:

● Soft scheduling

○ RR: Round-robin scheduling

● Hard (real-time) scheduling

○ Rate Monotonic scheduler

○ Deadline Monotonic scheduler

> Other important/famous algorithms: see here

https://en.wikipedia.org/wiki/Scheduling_(computing)

Round-robin Scheduling

25

⇒ Each job gets equal CPU time - no priority:

● Circular queue

● Fair but inefficient

Given:

● Circular list of tasks task_list of size N

● Number of scheduling ticks: t

schedule:

● current = task_list[t]

● t = (t + 1) mod N

● If the one CPU quantum is 5 ticks, can you track

the time-process horizon? (aka Gantt chart)

● Comment of CPU Efficiency!

Digressing: CPU–I/O Burst Cycles

26

● Maximum CPU utilization obtained with multiprogramming

● CPU–I/O Burst Cycle – Process execution consists of a

cycle of CPU execution and I/O wait

● CPU burst followed by I/O burst

Back: Round-robin Scheduling

27

Round-robin Scheduling (Contd.)

28

29

Round-robin Scheduling (Contd.)

30

Round-robin Scheduling (Contd.)

31

Round-robin Scheduling (Contd.)

32

Round-robin Scheduling (Contd.)

33

Round-robin Scheduling (Contd.)

34

Round-robin Scheduling (Contd.)

35

Round-robin Scheduling (Contd.)

Round-robin Scheduling (Fast-forward)

36

37

Round-robin Scheduling (Contd.)

38

Round-robin Scheduling (Contd.)

39

Round-robin Scheduling (Contd.)

CPU Utilization

40

● CPU was is idle 22.5% of the time!

● Criteria for a good scheduler:
○ Max CPU utilization; Max throughput
○ Min turnaround time; Min waiting time; Min response time

Other ‘Easy’ Scheduling Algorithms

41

First- Come, First-Served (FCFS)

● Waiting time for P1 = 0; P2 = 20; P3 = 10
● Average waiting time: (0 + 20 + 10)/3 = 10

Process Arrival Burst Time

P1 0 24

P2 4 3

P3 17 3

Shortest-Job-First (SJF)

● Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Process Arrival Burst Time

P1 0 6

P2 0 8

P3 0 7

P4 0 3

Rate Monotonic Scheduler

42

⇒ Real time priority scheduler

● The task with the shortest period is

scheduled first

● Task is run until it finishes

● Running task can be preempted

○ But need to be with higher priority

Can you track the time-process horizon? (aka Gantt chart)

Rate Monotonic Scheduler

43

Rate Monotonic Scheduler

44

Rate Monotonic Scheduler (Fast Forward)

45

Rate Monotonic Scheduler (Contd.)

46

Rate Monotonic Scheduler (Contd.)

47

Rate Monotonic Scheduler (Contd.)

48

Rate Monotonic Scheduler (Contd.)

49

Deadline Monotonic Scheduling

50

⇒ Real time priority scheduler

● Also known as Earliest Deadline First

(EDF) scheduling

● The task with the earliest deadline is

scheduled first

○ Important: pay attention to the

deadline in a given period

● Running task can be preempted

○ But need to be with higher priority
Can you track the time-process horizon?

(aka Gantt chart)

Deadline Monotonic Scheduling

51

Task-1 deadline in this cycle: 80

Task-2 deadline in this cycle: 50
Task-3 deadline in this cycle: 100

Deadline Monotonic Scheduling (Contd.)

52

Task-1 deadline in this cycle: 80

Task-2 deadline in this cycle: Done
Task-3 deadline in this cycle: 100

53

Task-1 deadline in this cycle: Done

Task-2 deadline in this cycle: Done
Task-3 deadline in this cycle: 100

Deadline Monotonic Scheduling (Contd.)

54

Task-2 deadline in this cycle: 100
Task-3 deadline in this cycle: 100

Task-1 deadline in this cycle: Done

Deadline Monotonic Scheduling (Contd.)

55

Task-2 deadline in this cycle: 100

Task-1 deadline in this cycle: Done

Task-3 deadline in this cycle: Done

Deadline Monotonic Scheduling (Contd.)

56

Task-2 deadline in this cycle: 100

Task-1 deadline in this cycle: 160

Task-3 deadline in this cycle: Done

Deadline Monotonic Scheduling (Contd.)

57

Deadline Monotonic Scheduling (Contd.)

58

Deadline Monotonic Scheduling (Contd.)

● File management and sharing
● Disk handler, meta-data handler
● Database and file systems

● Protection
● Network access and security; hardware security

● Memory management
● Disk, memory access, and cache management
● Object management: signaling and buffering
● Advanced scheduling and deadlock management

● I/O management and interfacing
● On-board hardware and peripherals; external devices

● Specialized OS: ROS - Robot Operating System

Other Important OS Components

59

About 40-50 years of advanced literature.
Now we know where to start!

