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Topics and Outline
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OS Concepts and RTOS adaptations

● Programs and processes
● Threads in multi-threaded systems
● Scheduling algorithms and implementation
● Inter-process communication
● Synchronization and resource sharing

Reference and acknowledgements

● Book:  Operating System Concepts (Ninth Edition) By A. Silberschatz, P. Galvin, and G. Gagne
● Course: 

○ Operating Systems By Dr. Steven Hand at University of Cambridge
○ An introduction to RTOS and Schedulability Analysis By Marco Di Natale Scuola Superiore S. Anna



Processes (aka Jobs) 
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● An operating system executes a variety of programs:
○ Batch system – jobs / processes
○ Time-shared systems – user programs or tasks

● Process – a program in execution
● Multiple parts

○ The program code, also called text section
○ Current activity: PC (program counter), processor registers
○ Stack containing temporary data

■ Function parameters, return addresses, local variables
○ Data section containing global variables
○ Heap containing memory dynamically allocated during run time



Program vs Process vs Threads 
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● Program is a passive entity stored on disk (executable files)
● Process is active 

● Program becomes process when it is loaded into memory
● Execution of program started via 

○ GUI or mouse clicks, command line calls, etc.
○ Interrupts or calls by other programs!

● One program can be several processes
● Each process can have multiple threads 

○ A thread is the basic unit to which OS allocates processor time
○ Each process is started with a primary thread 
○ But can create additional threads from any of its threads.



Process States 

5

EEL 4745C: Microprocessor Applications II

● As a process executes, it changes state
● OS is responsible for coordination

○ Multi-threaded scheduling & execution

● Process states 
○ new:  The process is being created
○ running:  Instructions are being executed
○ waiting:  The process is waiting for some 

event to occur
○ ready:  The process is waiting to be 

assigned to a processor
○ terminated:  The process has finished 

execution



Process Creation
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A parent process can create many new processes via system calls
● System call to create process: fork()
● Each child process may in-turn create new child process 
● Every process gets a unique process identifier: PID

How the child process gets its resources?
● OS can create some 
● The parent process can allocate some

Address space of child processes
● Gets an exact copy of the parents address space
● What is ‘copy-on-write’? 



Process Termination
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A process termination can occur in many ways
● Normal termination – A process finishes executing its final 

statement: exit(). All the resources allocated to it are freed by 
the operating system. 

● Forced Termination – a parent process can terminate its child 
process by invoking the system call: abort(). 

● This can happen due to the following reasons:
○ Child exceeds its usage of resources
○ Task assigned to the child is no longer required
○ Parent exits; OS does not allow child to run if parent 

terminates, child is then handled by the init_process. 

○ User can also forcefully terminate a process: kill() 

● If no parent waiting (didn’t invoke wait()), process is: zombie

● If parent terminated without invoking wait , process is: orphan



8

EEL 4745C: Microprocessor Applications II

Logistics
⇒ Lab-2 demo and quiz-1 starts today

● Different problems, but similar difficulty level

● One of three (3 x 5 = 15)

⇒ Lab-1 grades are out (since Monday)

● Grades are final after 1 week of posting

⇒ Lab-3 manual and code template are out

● Go over the files and functions (specially the new IPC library and 

periodic thread functions)

● Read the manual carefully and thoroughly



Zombie vs Orphan Process
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● When a child process terminates before the parent invokes wait()
○ It needs to signal its parents about its exit: using SIGCHLD

○ Then the parent calls wait()and clears it from process table
○ During this step the child process is a zombie or defunct 

A process that has completed its task while no parent is waiting 
on it, but still shows an entry in the process table 

● When a parent is terminated but the child process is still running

○ It is called an orphan
○ Orphan processes are handled by the init_process, which 

performs the wait()call so that the orphans processes can die

>> See this stackoverflow discussion. 

https://stackoverflow.com/questions/20688982/zombie-process-vs-orphan-process


PCB: Process Control Block 
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PCB Holds information associated with each process
● Process state 
● Program counter
● CPU registers 
● CPU scheduling information

○  Priorities, scheduling queue pointers
● Memory-management information 

○ Memory allocated to the process
● Accounting information 

○ CPU used, clock time elapsed since start, time limits
● I/O status information 

○ I/O devices allocated to process, list of opened files



Control Blocks: PCB and TCB
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Process-to-Process Transition 
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Process Scheduling
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● Maximizes CPU use for time sharing
● Maintains scheduling queues of processes

○ Job queue – set of all processes in the system
○ Ready queue – set of all processes residing in main memory, ready and waiting to execute
○ Device queues – set of processes waiting for an I/O device
○ Processes migrate among the various queues



Scheduling: Process vs Thread
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● Scheduling a process means making the threads within the process candidates for scheduling

● Scheduling a thread means resuming it

● Suspending a process means suspending all the threads within the process.

● Suspending a thread means suspending its execution

Process States Thread States



Context Switching: PCB and TCB
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● When CPU switches to another process
○ OS must save the state of the old process and load the saved state for the new process

● Context of a process represented in the PCB
● Context-switch time is overhead; the system does no useful work while switching

● Context switching between process and threads uses the same philosophy

○ Thread context switching (saving and loading new TCBs) are obvious much faster



IPC: Inter-Process Communication
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● Processes within a system may be independent or cooperating
● Cooperating process can affect or be affected by other processes, including sharing data
● Reasons for cooperating processes:

○ Information sharing
○ Computation speedup, Modularity

● Cooperating processes need interprocess communication (IPC)
● Two models of IPC

○ Shared memory
■ Need synchronization

○ Message passing
■ send (P, message)  – send a message to process P
■ receive(Q, message)  – receive a message from process Q



Synchronization: Message Passing
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● Message passing may be either blocking or non-blocking
● Blocking is considered synchronous

○ Blocking send -- the sender is blocked until the message is received
○ Blocking receive -- the receiver is  blocked until a message is available

● Non-blocking is considered asynchronous
○ Non-blocking send -- the sender sends the message and continue
○ Non-blocking receive -- the receiver receives:

■  A valid message,  or 
■  Null message

● Different combinations possible
○ If both send and receive are blocking, we have a rendezvous



Synchronization: Resource Sharing
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● Shared memory communication

○ Simplest model and the closest to the machine
○ all threads can access the same memory locations

● Critical Section

○ Parts of the code where the problem may happen

○ A sequence of operations that cannot be interleaved

● Resource: shared object where the conflict may happen

● Two critical sections on the same resource must be properly 

sequentialized, ie, must execute in mutual exclusion

○ General solution: semaphores!



Synchronization: Semaphores
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⇒ Software-based thread synchronization

● Synchronization with just a shared integer ~ semaphore  
● Proposed by Edsger Dijkstra  
● Types: 

○ Counting semaphores (when N units of resources available) 
○ Binary semaphores (guarantees mutual exclusiveness)

P

V

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra


Semaphore: General Implementation
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RTOS Adaptation

Scheduling and Synchronization



RTS: Real-time Systems
● Correctness of the system depends on

○ Logical results of computation
○ Time at which the results are produced

● Tasks need to complete before a deadline

○ System is at fault otherwise; task not completing 

before deadline is a scheduling failure

● For timing guarantee, system must be predictable

○ Upper bound suffices for most cases
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RTS Deadlines: Soft vs Firm vs Hard

● Examples

○ Hard deadline: traffic controllers

○ Soft/Firm deadline: background 

downloads, games, and multimedia
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● Various types of tasks in RTS/RTOS

○ Time: periodic vs aperiodic vs sporadic

○ Interrupt: preemptive vs non-preemptive

○ Priority/compile-time: static vs dynamic



Scheduling Algorithms
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RT scheduling

Soft Hard

Dynamic Static

Preemptive Non-preemptive

> We will explore:

● Soft scheduling

○ RR: Round-robin scheduling

● Hard (real-time) scheduling

○ Rate Monotonic scheduler

○ Deadline Monotonic scheduler

> Other important/famous algorithms: see here

https://en.wikipedia.org/wiki/Scheduling_(computing)


Round-robin Scheduling

25

⇒ Each job gets equal CPU time - no priority:

● Circular queue

● Fair but inefficient

Given:

● Circular list of tasks task_list of size N

● Number of scheduling ticks: t

schedule:

● current =  task_list[t] 

● t = (t + 1) mod N

● If the one CPU quantum is 5 ticks, can you track 

the time-process horizon? (aka Gantt chart)

● Comment of CPU Efficiency!



Digressing: CPU–I/O Burst Cycles
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● Maximum CPU utilization obtained with multiprogramming

● CPU–I/O Burst Cycle – Process execution consists of a 

cycle of CPU execution and I/O wait

● CPU burst followed by I/O burst



Back: Round-robin Scheduling
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Round-robin Scheduling (Contd.)
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Round-robin Scheduling (Contd.)
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Round-robin Scheduling (Contd.)
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Round-robin Scheduling (Contd.)
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Round-robin Scheduling (Contd.)
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Round-robin Scheduling (Contd.)
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Round-robin Scheduling (Contd.)
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Round-robin Scheduling (Contd.)



Round-robin Scheduling (Fast-forward)
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Round-robin Scheduling (Contd.)
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Round-robin Scheduling (Contd.)
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Round-robin Scheduling (Contd.)



CPU Utilization
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● CPU was is idle 22.5% of the time!

● Criteria for a good scheduler: 
○ Max CPU utilization; Max throughput
○ Min turnaround time; Min waiting time; Min response time



Other ‘Easy’ Scheduling Algorithms
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First- Come, First-Served (FCFS)

● Waiting time for P1  = 0; P2  = 20; P3 = 10
● Average waiting time:  (0 + 20 + 10)/3 = 10

Process Arrival Burst Time

P1 0 24

P2 4 3

P3 17 3

Shortest-Job-First (SJF)

● Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Process Arrival Burst Time

P1 0 6

P2 0 8

P3 0 7

P4 0 3



Rate Monotonic Scheduler
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⇒ Real time priority scheduler

● The task with the shortest period is 

scheduled first

● Task is run until it finishes

● Running task can be preempted 

○ But need to be with higher priority

Can you track the time-process horizon? (aka Gantt chart)



Rate Monotonic Scheduler
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Rate Monotonic Scheduler
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Rate Monotonic Scheduler (Fast Forward)
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Rate Monotonic Scheduler (Contd.)
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Rate Monotonic Scheduler (Contd.)
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Rate Monotonic Scheduler (Contd.)

48



Rate Monotonic Scheduler (Contd.)
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Deadline Monotonic Scheduling

50

⇒ Real time priority scheduler

● Also known as Earliest Deadline First 

(EDF) scheduling

● The task with the earliest deadline is 

scheduled first

○ Important: pay attention to the 

deadline in a given period

● Running task can be preempted 

○ But need to be with higher priority
Can you track the time-process horizon? 

(aka Gantt chart)



Deadline Monotonic Scheduling
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Task-1 deadline in this cycle: 80

Task-2 deadline in this cycle: 50
Task-3 deadline in this cycle: 100



Deadline Monotonic Scheduling (Contd.)
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Task-1 deadline in this cycle: 80

Task-2 deadline in this cycle: Done
Task-3 deadline in this cycle: 100
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Task-1 deadline in this cycle: Done

Task-2 deadline in this cycle: Done
Task-3 deadline in this cycle: 100

Deadline Monotonic Scheduling (Contd.)
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Task-2 deadline in this cycle: 100
Task-3 deadline in this cycle: 100

Task-1 deadline in this cycle: Done

Deadline Monotonic Scheduling (Contd.)
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Task-2 deadline in this cycle: 100

Task-1 deadline in this cycle: Done

Task-3 deadline in this cycle: Done

Deadline Monotonic Scheduling (Contd.)
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Task-2 deadline in this cycle: 100

Task-1 deadline in this cycle: 160

Task-3 deadline in this cycle: Done

Deadline Monotonic Scheduling (Contd.)
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Deadline Monotonic Scheduling (Contd.)
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Deadline Monotonic Scheduling (Contd.)



● File management and sharing
● Disk handler, meta-data handler
● Database and file systems

● Protection
● Network access and security; hardware security

● Memory management
● Disk, memory access, and cache management
● Object management: signaling and buffering
● Advanced scheduling and deadlock management

● I/O management and interfacing
● On-board hardware and peripherals; external devices

● Specialized OS: ROS - Robot Operating System

Other Important OS Components
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About 40-50 years of advanced literature. 
Now we know where to start! 


