Improving Your GBRTOS

EEL 4745C: Microprocessor Applications |l
Fall 2022

Md Jahidul Islam

Lecture 5

) UNIVERSITY
road= UF ¥1 ORIDA

Overview

e Discussions on: improving your GBRTOS implementation in Lab-2

e In Lab-3, you will do the following:

O

O

O

o

Improve semaphores using the blocking and yielding features
Add sleeping feature to background threads to free up CPU time as opposed to a delay
Integrate periodic threads in conjunction with multiple background threads, and

Implement IPC: Inter-Process Communication using FIFOs

e You have to demonstrate:

O

O

o

Periodic threads are working alongside background threads
Consistent IPC is happening based on FIFO principles
Joystick, temperature sensor, light sensors values are manipulated correctly

m See the lab-3 manual for details

2

UNIVERSITY of

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Improved Semaphore

Blocked Semaphore

o

Previously, we implemented a simple spinlock semaphore; the continuous spin-locks
wasted CPU memory

We will improve this by adding a blocked flag in TCB structure. If the blocked flag was set,
the blocked thread will yield the CPU control to next thread during the SysTick handler.

typedef struct tcb_t {
int32_t xstackPointer;
struct tcb_t xnextTCB;
struct tcb_t *xpreviousTCB;
semaphore_t *xblocked;
uint32_t sleepCount;
bool asleep;

} teb. %;

3

EEL 4745C: Microprocessor Applications I UF|UFY‘8zﬁfBA

Improved Semaphore: Wait

wait (S) {
while S <=0
; /] no-op
5-;
} Improved “Semaphore Wait”
o If the semaphore is not available
/: Kb Tanoer wailks Far senephore m The blocked semaphore of running thread
*x - Decrements semaphore should be initialized
* - Blocks thread if semaphore is unavailable .
& PATEN M5 PRINtEr £6 Sensphore Ha WeLE 6 = Then yield control to the next available thread
* THIS IS A CRITICAL SECTION
*/
void G8RTOS_WaitSemaphore(semaphore_t xs)
{

// your code

4

EEE temmeteee EEL 4745C: Microprocessor Applications I UF|UFNILV(SKISKIf]Y)1f&

Improved Semaphore: Signal

signal (S) {

S+
} Improved “Signal Semaphore”
o If the semaphore is not available
s Go through the TCB list and unblock the first
, } thread blocked on the same semaphore.\
7 / Increment semaphore
(*s)++;

" = Move that unlocked thread to the next thread

if((*s) <= @)

to be executed
2 tcb_t *pt = CurrentlyRunningThread->nextTCB;
while(pt->blocked != s)

44 {
45 pt = pt->nextTCB;
46 }
43 pt->blocked = @;
49 }
5
ikl EEL 4745C: Microprocessor Applications I UF UFNILVSIS&]YDA

Improved TCB

Struct : Thread Control Block
bool Alive

typedef struct tcb_t {
int32_t xstackPointer;
struct tcb_t *nextTCB;
struct tcb_t *previousTCB;
semaphore_t xblocked; uint32_t Sleep Count
uint32_t sleepCount;
bool asleep;

¥ tch. & TCB * Previous TCB

uint8_t Priority

bool Asleep

Semaphore * Blocked

TCB * Next TCB

int32_t * Stack Pointer

6

EEL 4745C: Microprocessor Applications I UF|UFNI:‘8‘IS{TBA

Sleeping

e Active State: Thread is ready to run but waiting for its turn

e You Sleep State: Thread is waiting for a fixed amount of time before it enters the active state again

e Blocked State: Thread is waiting on some external or temporal event

e Blocking and sleeping help to free up the processor to perform other tasks as opposed to just

“spinning” (wasting its entire time slice checking if the event condition is met)

/*

* Puts the current thread into a sleep state.

% param durationMS: Duration of sleep time in ms

*/

void sleep(uint32_t durationMS)

{
CurrentlyRunningThread—>sleepCount = durationMS + SystemTime;
CurrentlyRunningThread->asleep = 1;
HWREG (NVIC_INT_CTRL) |= NVIC_INT_CTRL_PEND_SV;

7
ElginEh rici UNIVERSITY of
Eegom‘pieﬁ‘é;g:;‘é EEL 4745C: Microprocessor Applications |1 UF|FLORIDGA

EEeE

Using the Sleep Function

e Inthe SysTick handler, check every sleeping thread’s sleep count
e |If the thread'’s sleep count is equal to the current SystemTime
o Then that thread is to be wake up

o Otherwise, it remains sleeping

/*

* Puts the current thread into a sleep state.

% param durationMS: Duration of sleep time in ms

*/

void sleep(uint32_t durationMS)

{
CurrentlyRunningThread—>sleepCount = durationMS + SystemTime;
CurrentlyRunningThread->asleep = 1;
HWREG (NVIC_INT_CTRL) |= NVIC_INT_CTRL_PEND_SV;

8
.—E Eec";’m‘;’i';ﬁ‘g;;':i’,'ma' EEL 4745C: Microprocessor Applications Il UF|UF]\I]I,‘8§TB;\

Improved Scheduler

Note: It is possible that all threads can be either
sleeping or blocked, in which case we enter an
infinite loop here.

How do we avoid this in Lab-3?

CRT = CRT->NextTCB

9

UNIVERSITY of

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Improved SysTick Handler

void SysTick_Handler()

Gets the current threads (periodic and background)

{ .
SystemTime++; Increments system time
tcb_t *ptr = CurrentlyRunningThread;
ptcb_t *Pptr = &Pthread[0];

Loop through the periodic threads, and execute

them appropriately (if their time is now!)

Loop through the background threads: check

sleeping threads and wake them up appropriately

(if their time is now!)

// now lets do the context switch .

HWREG (NVIC_INT_CTRL) |= NVIC_INT_CTRL_PEND_SV; | Context Switch
}

Department of Electrical
& Computer Engineering

EEeE

EEL 4745C: Microprocessor Applications I

UF

10

UNIVERSITY of

FLORIDA

Alternate Sleeping Implementation

e Another way to implement sleeping is to
o Remove the new sleeping thread from the linked list of active threads, and

o Insert it to a doubly linked list of sleeping threads
e This list of sleeping threads will be sorted from smallest to highest sleep count
e Once the thread with the lowest sleep count equals the system time, that thread is woken up
e Advantage:

o Now we only have to check one sleeping thread’s sleep count within the SysTick handler

as opposed to every initialized thread

Lab-3 Bonus point: +1

1"

UNIVERSITY of

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Example: Alternate Sleep Function

void ThreadA()
while(l1)
¢ /* Does some process */
// Sleep for 300ms

G8RTOS_Sleep(300);
3

}

‘ Department of Electrical
| & Computer Engi

Linked List of Active Threads

T

y
L

Thread A Thread B & Thread C

<o v

Linked List of Sleeping Threads

SR

Thread D - Thread E N Thread F
Sleep Count Sleep Count 250 Sleep Count
100 + Cst + Cst 500 + Cst

A
A

<« 7

12

EEL 4745C: Microprocessor Applications I UF|UFY‘811%HDOA

Example: Alternate Sleep Function

Linked List of Active Threads
A

Thread A v Thread B Thread C

A
S

o7

void ThreadA()
:{vhﬂe(l) Linked List of Sleeping Threads

/* Does some process */

// Sleep for 300ms

Thread D Thread E Thread A Thread F
G8RTOS_Sleep(300); > > >
} Sleep Count Sleep Count 250 Sleep Count Sleep Count
} 100 + Cst +Cst 300 + Cst 500 + Cst

A
A
A

N 4z

13

EEE temmeteee EEL 4745C: Microprocessor Applications I UF|”F”118‘13‘fbA

Example: Alternate Sleep Function

void ThreadA()
while(l1)
¢ /* Does some process */
// Sleep for 300ms
G8RTOS_Sleep(300);

}
}

Department of Electrical
& Computer Engi

RGH

Linked List of Active Threads

Thread B

Thread C

Linked List of Sleeping Threads

Thread D

Sleep Count
100 + Cst

@

Thread E

T

Thread A

Sleep Count 250
+ Cst

Sleep Count
300 + Cst

oy

EEL 4745C: Microprocessor Applications I

\ 4

<o

4&

Thread F

Sleep Count
500 + Cst

14

UF |[FLORIDA

Example: Alternate Sleep Function

Linked List of Active Threads

Now that the System Time has S g

incremented enough times to <
equal Thread D’s Sleep Count, it
is time to add Thread D back into
the Active Thread Linked List Linked List of Sleeping Threads

A A

Thread D Thread E R Thread A) Thread F
Sleep Count 0 Sleep Count 150 Sleep Count Sleep Count
+Cst +Cst 200 + Cst 400 + Cst

oy o

15

E@EE onmegteera EEL 4745C: Microprocessor Applications I UF|”F”118‘13‘fbA

Example: Alternate Sleep Function

Linked List of Active Threads

Thread B Thread C
Since the list of active threads is /
Round-Robin (no priority), we can

simply add it to the back of the
linked list.

a

Linked List of Sleeping Threads
A T

Thread F

Thread D _ Thread E _ Thread A o
Sleep Count 0 Sleep Count 150 Sleep Count Sleep Count
+Cst P +Cst p 200 + Cst _ 400 + Cst
¢ <

oy o

16

E@-E Depertnent of Flectrica EEL 4745C: Microprocessor Applications |I UF|UF]\i‘8is{IfoA

& Computer Engineering

Example: Alternate Sleep Function

Linked List of Active Threads

A

Thread B Thread C Thread D

Previous and Next TCB pointers N

are assigned accordingly

Linked List of Sleeping Threads

Thread E Thread A _ Thread F
Sleep Count Sleep Count 200 Sleep Count
150 + Cst - +Cst = 400 + Cst
17

EEL 4745C: Microprocessor Applications I UF|UFY‘8zﬁfBA

Periodic Threads

e Aperiodic thread is simply a function that performs a unique task after a certain amount of time has passed
e There are a few ways to trigger periodic threads:

o Hardware Timer
m If the number of periodic tasks is small, we can allocate a unique hardware timer to each task.

m Alternatively, we could use just one timer, give each periodic thread a current time and period,
and cycle through the events in round-robin fashion.

o SysTick Timer
m We can use the scheduler as the timer to call periodic events before performing a context switch.

m This is how it will be implemented for GBRTOS!

18

UNIVERSITY of

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Periodic Thread Control Block

typedef struct ptcb_t { Struct : Periodic Event
void (xhandler) (void); void (*Handler)(void)
uint32_t period; uint32_t Period
uint32_t executeTime;

uint32_t Execute Time
uint32_t currentTime;

. 2 2 t T.
struct ptcb_t *previousPTCB; uint32_t Current Time
struct ptcb_t *nextPTCB; Periodic Event * Previous P-Event

} pt Cb—t ’ Periodic Event * Next P-Event

19
EEL 4745C: Microprocessor Applications I UF|UFNI:‘8‘IS{TBA

Adding a Periodic Thread in a Linked List

*x
* Adds periodic threads to G8RTOS Scheduler

* Function will initialize a periodic event struct to represent event.
* The struct will be added to a linked list of periodic events

* Param Pthread To Add: void-void function for P thread handler

* Param period: period of P thread to add

* Returns: Error code for adding threads

int G8RTOS_AddPeriodicEvent(void (*PthreadToAdd)(void), uint32_t period, uint32_t execution)
{

// your code

Recall your implementation of the GBRTOS_AddThread function!

20

. E ‘Depsmmemr ;; ;Iemira' EEL 4745C: Microprocessor Applications I UF|UF]\I]L‘81]SﬁBA

Periods with Common Multiples

Suppose two periodic events exist with the following periods:

Task B will always occur immediately after Task A, because its period is a multiple Task A's
To combat this, we can give one P-Thread a difference initial current time other than 0
Example:

o Task Ainitial time = 0, Task B initial time = 1

o Task A will run 3 times after 6 SysTick interrupts, and Task B will run on the 7th tick

Note: In order for this system to work properly, the maximum time to execute each task must be very

short compared to the period of the SysTick to avoid missing interrupts

21

UNIVERSITY af

EEL 4745C: Microprocessor Applications I UF‘FLORIDA

Periodic vs Sleeping Threads

e Periodic threads are always in the active state
e Sleeping threads go between the active state and spinning in the sleep state
e Periodic threads ensure a periodic time more accurately

o This is because when a thread is done sleeping, it doesn't necessarily mean it is currently

running, but simply means it is active and able to run when it is its turn

22

UNIVERSITY af

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Inter-Process Communication

e We implement the FIFO structure as IPC
o First In First Out

® FIFO Enqueue
. . . . Enqueu\ev
o Maintain a linked list/array as queue EnqueD'
. Enqueu\e'
o Write to the end of queue
o Read from the begin of queue
HI
\\Dequeue
_ 4 \Dequeue =~ >[5]
e You have to implement \Dequeve 4]
\Dequeue ~—3]
o FIFO Initialization \Dequeue “—>[2]
~{1]

o Read from FIFO
o Write to FIFO

23
EEE temmeteee EEL 4745C: Microprocessor Applications I UF|”ﬁf5‘ﬁ‘fbA

Implementing FIFO

e Hints
O
O

@)

No more than 4 FIFOs are needed in your GBRTOS
You can static define FIFOs with array to improve performance

Read/Write an int32 t data from/into FIFO each time

e Structures

@)

@)

Buffer where data will be held: Int32 t Buffer [FIFOSIZE]
Head pointer: int32 t *Head

Tail pointer: int32 t *Tail

Lost data count: uint32 t LostData

Current Size semaphore: semaphore t CurrentSize

Mutex semaphore: semaphore t Mutex

cal

Department of Electric . . . o
0-E £ Carmpuir Erghesing EEL 4745C: Microprocessor Applications I

22
23
24
25
26
27
28
29
30
31
32
33

typedef struct FIFO_t {
int32_t buffer[16];
int32_t xhead;
int32 T ktail:
uint32_t lostData;
semaphore_t currentSize;
semaphore_t mutex;

¥ FIFQ 13

/* Array of FIFOS x/
static FIFO_t FIFOs[4];

24

UF |[FLORIDA

Read Function of FIFO

e Parameter: an int32 t value, which FIFO should be read
e Return value: an int32 t value from the head of FIFO

e Mutex semaphore

o Wait before reading from FIFO /%
* Reads FIFO
O In case the FIFO |S be|ng read from another thread * - Waits until CurrentSize semaphore is greater than zero
* - Gets data and increments the head pointer (wraps if necessary)
- * Param: "FIFOChoice": chooses which buffer we want to read from
. Current Slze Semaphore * Returns: uint32_t Data from FIFO
*/
o Wait before reading from FIFO int32_t readFIFO(uint32_t FIFOChoice)
{
o In case the FIFO is empty , A YeE o

e When read is complete:
o Update the head pointer

o Signal the Mutex semaphore so other waiting threads can read

25

UNIVERSITY af

Department of Flectical EEL 4745C: Microprocessor Applications |I UF|FLORIDA

& Computer Engineering

EEeE

Write Function of FIFO

e Parameter:
o An int32 tvalue, which FIFO should be read

o An int32 tvalue, data to be written into the tail of FIFO

- /*
e Current Size semaphore % Writes to FIFO

Writes data to Tail of the buffer if the buffer is not full

o The value should be compared with the FIFOSIZE-1.

Increments tail (wraps if necessary)

m Provides 1 buffer cell in case an interrupt happens between
reading FIFO and incrementing its head.

"Data': Data being put into FIFO

*
*
* Param "FIFOChoice": chooses which buffer we want to read from
*
* Returns: error code for full buffer if unable to write

*/
m If the value is larger than FIFOSIZE-1, increment the lost ‘;f"t WSS PLROtholoe, stniEten Datal
data value and overwrite the old data. // your code
}
e Write the data
o Signal the Current Size semaphore and notify other waiting
threads the FIFO is not empty.
26
E@-E Eeg;rtgletztrz;zl:ge’ylmagl EEL 4745C: Microprocessor Applications Il UF|UFY‘8zﬁfBA

Implement Threads

e 2 periodic threads and 5 background threads @ WERSHET THEEADS. Ji.
7 #define THREADS_H_
8
e 3 FIFOs and 2 Semaphores A S R TP
10
¢ BackGround Thread O: 11 #define JOYSTICKFIFO @
o Empty default thread; does nothing (really?) s o al il
13 #define LIGHTFIFO 2
14
[BackGround Thread 1: 15 semaphore_t *sensorMutex;
> Read the BME280’s temperature sensor 13 SEnaphore. F *LEDMUtEX;
o Sends data to temperature FIFO 18 void BackGroundThread@(void);
o S|eep for 500ms 19 void BackGroundThreadl(void);
20 void BackGroundThread2(void);
. . . 21 void BackGroundThread3(void);
e Periodic Thread 0 (Period: 100ms): 22 void BackGroundThread4(void);
o Read X-coordinate from the joystick 23

24 void Pthread@(void);

25 void Pthreadl(void);

26

27 #endif /* THREADS_H_ %/

o Write data to Joystick FIFO

27

Department of Electrical
& Computer Engineering

EEeE

EEL 4745C: Microprocessor Applications I UF|UFY‘8inliBj\

Implement Threads

EEeE

e 2 periodic threads and 5 background threads

e 3 FIFOs and 2 Semaphores

e Periodic Thread 1 (Period: 100ms):

O

Department of Electrical
& Computer Engineering

Prints out the decayed average value of the joystick’s
X-coordinate in a UART console.

Prints out the temperature value in a UART console (in
degrees Fahrenheit).

What if temp sensor does not work?
m Use the gyro x-axis

EEL 4745C: Microprocessor Applications I

O 00 N O

10
i |
12
jlic:
14
15
16
1
18
19
20
21
22
23
24
25
26
27

#ifndef THREADS_H_
#define THREADS_H_

#include "G8RTOS.h"

#define JOYSTICKFIFO @
#define TEMPFIFO 1
#define LIGHTFIFO 2

semaphore_t *sensorMutex;

semaphore_t *LEDMutex;

void
void
void
void
void

void
void

BackGroundThread@(void);
BackGroundThreadl(void);
BackGroundThread2(void);
BackGroundThread3(void);
BackGroundThread4(void);

Pthread@(void);
Pthreadl(void);

#endif /x THREADS_H_ */

UF

28

UNIVERSITY af

FLORIDA

Implement Threads

2 periodic threads and 5 background threads

3 FIFOs and 2 Semaphores

BackGround Thread 2:
o Read the light sensor.
o Send data to light FIFO.
o Sleep for 200ms.

BackGround Thread 3:
o Read temperature FIFO.

o Output data to Red/Blue LEDs as shown in the figure.

Feel free to adjust or normalize the temperature values if

needed.

EEL 4745C: Microprocessor Applications I

DT T T T T T o I

Temp > 84

O30 O 03 00 7 O30 o

| 81 < Temp < 84 I

OO0O00O000NSEEENEE

| 78 < Temp < 81 I

O O3 00 O3 07 0 O 0 o o

| 75 <Temp <78 |
T

10000 0 07 07 07

| 72 <Temp <75 |

OOoO0O0000NENEEEEE

| 69 < Temp <72 |

ooooOo000NSeeeEEN

| 66 < Temp < 69 |

O0000000EEEEeEeE

I 63 < Temp < 66 | 29

UF |[FLORIDA

Implement Threads

L OOooOmEEEO00000000
e 2 periodic threads and 5 background threads
| -6000 > X-Coord > -8000 |
e 3 FIFOs and 2 Semaphores OO0O00EEEO000000000
| -4000 > X-Coord > -6000 |
° BackGround Thread 4: OooOoOomEOoooonooon
) Read the joyStiCk'S FIFO I 2000 > X-Coord > -4000 |
o Calculate decayed average: to calculate a 50% decaying OooOoEOO0O00o0ooooon
average, you will have an int32 t variable (eg, named [500> X-Coord > 2000 |
Avgqg). After getting a new value, Avg will be updated as OoOooooooooooood
| 500> X-Coord > -500 ‘
Avg = (Avg + value) >> 1 OOoOomO000000000000
| 2000> X-Coord > 500 |
e Output data to Green LEDs as shown in the figure. OooEEOooooooooooo
| 4000> X-Coord > 2000 ‘
OEEEO00000000000
| 6000> X-Coord > 4000 ‘
mEEEOO00000000000
| X-Coord > 6000 ‘ %0
EEE temmeteee EEL 4745C: Microprocessor Applications I UF|UFYV(5'is{Iff)A

Your Feedback Summary

=> Positives

Good contents, utility for career options, good hands-on and theory balance, good slides.
The board setup is cool, manageable workload, templates are helpful.

The bonus points and questions in-class are great. Topics are well structured.

The book & slide contents are consistent with lab-work, RTOS seems manageable now.
TAs are awesome and very helpful. They try to accommodate based on given situations.

Rating (0-10)

= Things to improve: Count: 41

e Some OS concepts should be covered at the beginning; crash-course was useful but late. AVg:_ 9.42

e Some Lab-2 solutions are in the book, should have more challenging problems. GRS B
e Should have more TAs, office hours are sparse. Min: 7 (# 5)
e Lecture slides could be annotated. Lab solutions can be discussed. Ma>;: 12 (# 4)

= Other suggestions

Topics: varied opinions about depth and time-spent (slow/fast) on certain topics.
Labs: some theoretical/on-paper homeworks will be nice to complement the labs.
In-class: Sometimes the class is too quiet (speaker is not turned on always).
Others: ...

31

UNIVERSITY af

EEL 4745C: Microprocessor Applications I UF|FLORIDA

= Lab-2 demo and quiz-1 ends this week

= Lab-3 demos start from next Monday (Oct 10th)

= Mid Exam

e October 14th Friday: regular class time
e Time: 40 minutes
e We will discuss question patterns and practice

questions in the coming weeks

EEL 4745C: Microprocessor Applications I

UF

32

FLORIDA

