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Overview

e Discussions on: improving your GBRTOS implementation in Lab-2

e In Lab-3, you will do the following:

O

O

O

o

Improve semaphores using the blocking and yielding features
Add sleeping feature to background threads to free up CPU time as opposed to a delay
Integrate periodic threads in conjunction with multiple background threads, and

Implement IPC: Inter-Process Communication using FIFOs

e You have to demonstrate:

O

O

o

Periodic threads are working alongside background threads
Consistent IPC is happening based on FIFO principles
Joystick, temperature sensor, light sensors values are manipulated correctly

m See the lab-3 manual for details
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Improved Semaphore

Blocked Semaphore

o

Previously, we implemented a simple spinlock semaphore; the continuous spin-locks
wasted CPU memory

We will improve this by adding a blocked flag in TCB structure. If the blocked flag was set,
the blocked thread will yield the CPU control to next thread during the SysTick handler.

typedef struct tcb_t {
int32_t xstackPointer;
struct tcb_t xnextTCB;
struct tcb_t *xpreviousTCB;
semaphore_t *xblocked;
uint32_t sleepCount;
bool asleep;

} teb. %;
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Improved Semaphore: Wait

wait (S) {
while S <=0
; /] no-op
5-;
} Improved “Semaphore Wait”
o If the semaphore is not available
/: Kb Tanoer wailks Far senephore m The blocked semaphore of running thread
*x - Decrements semaphore should be initialized
* - Blocks thread if semaphore is unavailable .
& PATEN M5 PRINtEr £6 Sensphore Ha WeLE 6 = Then yield control to the next available thread
* THIS IS A CRITICAL SECTION
*/
void G8RTOS_WaitSemaphore(semaphore_t xs)
{

// your code
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Improved Semaphore: Signal

signal (S) {

S+
} Improved “Signal Semaphore”
o If the semaphore is not available
s Go through the TCB list and unblock the first
, } thread blocked on the same semaphore.\
7 / Increment semaphore
(*s)++;

" = Move that unlocked thread to the next thread

if((*s) <= @)

to be executed
2 tcb_t *pt = CurrentlyRunningThread->nextTCB;
while(pt->blocked != s)

44 {
45 pt = pt->nextTCB;
46 }
43 pt->blocked = @;
49 }
5
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Improved TCB

Struct : Thread Control Block
bool Alive

typedef struct tcb_t {
int32_t xstackPointer;
struct tcb_t *nextTCB;
struct tcb_t *previousTCB;
semaphore_t xblocked; uint32_t Sleep Count
uint32_t sleepCount;
bool asleep;

¥ tch. & TCB * Previous TCB

uint8_t Priority

bool Asleep

Semaphore * Blocked

TCB * Next TCB

int32_t * Stack Pointer
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Sleeping

e Active State: Thread is ready to run but waiting for its turn

e You Sleep State: Thread is waiting for a fixed amount of time before it enters the active state again

e Blocked State: Thread is waiting on some external or temporal event

e Blocking and sleeping help to free up the processor to perform other tasks as opposed to just

“spinning” (wasting its entire time slice checking if the event condition is met)

/*

* Puts the current thread into a sleep state.

% param durationMS: Duration of sleep time in ms

*/

void sleep(uint32_t durationMS)

{
CurrentlyRunningThread—>sleepCount = durationMS + SystemTime;
CurrentlyRunningThread->asleep = 1;
HWREG (NVIC_INT_CTRL) |= NVIC_INT_CTRL_PEND_SV;
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Using the Sleep Function

e Inthe SysTick handler, check every sleeping thread’s sleep count
e |If the thread'’s sleep count is equal to the current SystemTime
o Then that thread is to be wake up

o Otherwise, it remains sleeping

/*

* Puts the current thread into a sleep state.

% param durationMS: Duration of sleep time in ms

*/

void sleep(uint32_t durationMS)

{
CurrentlyRunningThread—>sleepCount = durationMS + SystemTime;
CurrentlyRunningThread->asleep = 1;
HWREG (NVIC_INT_CTRL) |= NVIC_INT_CTRL_PEND_SV;
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Improved Scheduler

Note: It is possible that all threads can be either
sleeping or blocked, in which case we enter an
infinite loop here.

How do we avoid this in Lab-3?

CRT = CRT->NextTCB
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Improved SysTick Handler

void SysTick_Handler()

Gets the current threads (periodic and background)

{ .
SystemTime++; Increments system time
tcb_t *ptr = CurrentlyRunningThread;
ptcb_t *Pptr = &Pthread[0];

Loop through the periodic threads, and execute

them appropriately (if their time is now!)

Loop through the background threads: check

sleeping threads and wake them up appropriately

(if their time is now!)

// now lets do the context switch .

HWREG (NVIC_INT_CTRL) |= NVIC_INT_CTRL_PEND_SV; | Context Switch
}
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Alternate Sleeping Implementation

e Another way to implement sleeping is to
o Remove the new sleeping thread from the linked list of active threads, and

o Insert it to a doubly linked list of sleeping threads
e This list of sleeping threads will be sorted from smallest to highest sleep count
e Once the thread with the lowest sleep count equals the system time, that thread is woken up
e Advantage:

o Now we only have to check one sleeping thread’s sleep count within the SysTick handler

as opposed to every initialized thread

Lab-3 Bonus point: +1

1"
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Example: Alternate Sleep Function

void ThreadA()
while(l1)
¢ /* Does some process */
// Sleep for 300ms

G8RTOS_Sleep(300);
3

}

‘ Department of Electrical
| & Computer Engi

Linked List of Active Threads

T

y
L

Thread A Thread B & Thread C

<o v

Linked List of Sleeping Threads

SR

Thread D - Thread E N Thread F
Sleep Count Sleep Count 250 Sleep Count
100 + Cst + Cst 500 + Cst

A
A

<« 7
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Example: Alternate Sleep Function

Linked List of Active Threads
A

Thread A v Thread B Thread C

A
S

o7

void ThreadA()
:{vhﬂe(l) Linked List of Sleeping Threads

/* Does some process */

// Sleep for 300ms

Thread D Thread E Thread A Thread F
G8RTOS_Sleep(300); > > >
} Sleep Count Sleep Count 250 Sleep Count Sleep Count
} 100 + Cst +Cst 300 + Cst 500 + Cst

A
A
A

N 4z
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Example: Alternate Sleep Function

void ThreadA()
while(l1)
¢ /* Does some process */
// Sleep for 300ms
G8RTOS_Sleep(300);

}
}
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RGH

Linked List of Active Threads

Thread B

Thread C

Linked List of Sleeping Threads

Thread D

Sleep Count
100 + Cst

@

Thread E

T

Thread A

Sleep Count 250
+ Cst

Sleep Count
300 + Cst

oy
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Thread F

Sleep Count
500 + Cst
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Example: Alternate Sleep Function

Linked List of Active Threads

Now that the System Time has S g

incremented enough times to <
equal Thread D’s Sleep Count, it
is time to add Thread D back into
the Active Thread Linked List Linked List of Sleeping Threads

A A

Thread D Thread E R Thread A ) Thread F
Sleep Count 0 Sleep Count 150 Sleep Count Sleep Count
+Cst +Cst 200 + Cst 400 + Cst

oy o
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Example: Alternate Sleep Function

Linked List of Active Threads

Thread B Thread C
Since the list of active threads is /
Round-Robin (no priority), we can

simply add it to the back of the
linked list.

a

Linked List of Sleeping Threads
A T

Thread F

Thread D _ Thread E _ Thread A o
Sleep Count 0 Sleep Count 150 Sleep Count Sleep Count
+Cst P +Cst p 200 + Cst _ 400 + Cst
¢ <

oy o
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Example: Alternate Sleep Function

Linked List of Active Threads

A

Thread B Thread C Thread D

Previous and Next TCB pointers N

are assigned accordingly

Linked List of Sleeping Threads

Thread E Thread A _ Thread F
Sleep Count Sleep Count 200 Sleep Count
150 + Cst - +Cst = 400 + Cst
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Periodic Threads

e Aperiodic thread is simply a function that performs a unique task after a certain amount of time has passed
e There are a few ways to trigger periodic threads:

o Hardware Timer
m If the number of periodic tasks is small, we can allocate a unique hardware timer to each task.

m Alternatively, we could use just one timer, give each periodic thread a current time and period,
and cycle through the events in round-robin fashion.

o SysTick Timer
m  We can use the scheduler as the timer to call periodic events before performing a context switch.

m This is how it will be implemented for GBRTOS!

18
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Periodic Thread Control Block

typedef struct ptcb_t { Struct : Periodic Event
void (xhandler) (void); void (*Handler)(void)
uint32_t period; uint32_t Period
uint32_t executeTime;

uint32_t Execute Time
uint32_t currentTime;

. 2 2 t T.
struct ptcb_t *previousPTCB; uint32_t Current Time
struct ptcb_t *nextPTCB; Periodic Event * Previous P-Event

} pt Cb—t ’ Periodic Event * Next P-Event

19
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Adding a Periodic Thread in a Linked List

*x
* Adds periodic threads to G8RTOS Scheduler

* Function will initialize a periodic event struct to represent event.
* The struct will be added to a linked list of periodic events

* Param Pthread To Add: void-void function for P thread handler

* Param period: period of P thread to add

* Returns: Error code for adding threads

int G8RTOS_AddPeriodicEvent(void (*PthreadToAdd)(void), uint32_t period, uint32_t execution)
{

// your code

Recall your implementation of the GBRTOS_AddThread function!

20
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Periods with Common Multiples

Suppose two periodic events exist with the following periods:

Task B will always occur immediately after Task A, because its period is a multiple Task A's
To combat this, we can give one P-Thread a difference initial current time other than 0
Example:

o Task Ainitial time = 0, Task B initial time = 1

o Task A will run 3 times after 6 SysTick interrupts, and Task B will run on the 7th tick

Note: In order for this system to work properly, the maximum time to execute each task must be very

short compared to the period of the SysTick to avoid missing interrupts

21
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Periodic vs Sleeping Threads

e Periodic threads are always in the active state
e Sleeping threads go between the active state and spinning in the sleep state
e Periodic threads ensure a periodic time more accurately

o This is because when a thread is done sleeping, it doesn't necessarily mean it is currently

running, but simply means it is active and able to run when it is its turn

22
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Inter-Process Communication

e We implement the FIFO structure as IPC
o First In First Out

® FIFO Enqueue
. . . . Enqueu\ev
o Maintain a linked list/array as queue EnqueD'
. Enqueu\e'
o  Write to the end of queue
o Read from the begin of queue
HI
\\Dequeue
_ 4 \Dequeue =~ >[5 ]
e You have to implement \Dequeve 4]
\Dequeue ~—3]
o FIFO Initialization \Dequeue  “—>[2]
~{1]

o Read from FIFO
o Write to FIFO

23
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Implementing FIFO

e Hints
O
O

@)

No more than 4 FIFOs are needed in your GBRTOS
You can static define FIFOs with array to improve performance

Read/Write an int32 t data from/into FIFO each time

e Structures

@)

@)

Buffer where data will be held: Int32 t Buffer [FIFOSIZE]
Head pointer: int32 t *Head

Tail pointer: int32 t *Tail

Lost data count: uint32 t LostData

Current Size semaphore: semaphore t CurrentSize

Mutex semaphore: semaphore t Mutex

cal

Department of Electric . . . o
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23
24
25
26
27
28
29
30
31
32
33

typedef struct FIFO_t {
int32_t buffer[16];
int32_t xhead;
int32 T ktail:
uint32_t lostData;
semaphore_t currentSize;
semaphore_t mutex;

¥ FIFQ 13

/* Array of FIFOS x/
static FIFO_t FIFOs[4];

24
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Read Function of FIFO

e Parameter: an int32 t value, which FIFO should be read
e Return value: an int32 t value from the head of FIFO

e Mutex semaphore

o Wait before reading from FIFO /%
* Reads FIFO
O In case the FIFO |S be|ng read from another thread * - Waits until CurrentSize semaphore is greater than zero
* - Gets data and increments the head pointer (wraps if necessary)
- * Param: "FIFOChoice": chooses which buffer we want to read from
. Current Slze Semaphore * Returns: uint32_t Data from FIFO
*/
o  Wait before reading from FIFO int32_t readFIFO(uint32_t FIFOChoice)
{
o In case the FIFO is empty , A YeE o

e When read is complete:
o Update the head pointer

o  Signal the Mutex semaphore so other waiting threads can read

25
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Write Function of FIFO

e Parameter:
o An int32 tvalue, which FIFO should be read

o An int32 tvalue, data to be written into the tail of FIFO

- /*
e Current Size semaphore % Writes to FIFO

Writes data to Tail of the buffer if the buffer is not full

o The value should be compared with the FIFOSIZE-1.

Increments tail (wraps if necessary)

m Provides 1 buffer cell in case an interrupt happens between
reading FIFO and incrementing its head.

"Data': Data being put into FIFO

*
*
* Param "FIFOChoice": chooses which buffer we want to read from
*
* Returns: error code for full buffer if unable to write

*/
m If the value is larger than FIFOSIZE-1, increment the lost ‘;f"t WSS PLROtholoe, stniEten Datal
data value and overwrite the old data. // your code
}
e Write the data
o  Signal the Current Size semaphore and notify other waiting
threads the FIFO is not empty.
26
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Implement Threads

e 2 periodic threads and 5 background threads @ WERSHET THEEADS. Ji.
7 #define THREADS_H_
8
e 3 FIFOs and 2 Semaphores A S R TP
10
¢ BackGround Thread O: 11  #define JOYSTICKFIFO @
o Empty default thread; does nothing (really?) s o al il
13 #define LIGHTFIFO 2
14
[ BackGround Thread 1: 15 semaphore_t *sensorMutex;
> Read the BME280’s temperature sensor 13 SEnaphore. F *LEDMUtEX;
o Sends data to temperature FIFO 18 void BackGroundThread@(void);
o S|eep for 500ms 19  void BackGroundThreadl(void);
20 void BackGroundThread2(void);
. . . 21 void BackGroundThread3(void);
e Periodic Thread 0 (Period: 100ms): 22 void BackGroundThread4(void);
o Read X-coordinate from the joystick 23

24  void Pthread@(void);

25 void Pthreadl(void);

26

27 #endif /* THREADS_H_ %/

o Write data to Joystick FIFO

27
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Implement Threads

EEeE

e 2 periodic threads and 5 background threads

e 3 FIFOs and 2 Semaphores

e Periodic Thread 1 (Period: 100ms):

O

Department of Electrical
& Computer Engineering

Prints out the decayed average value of the joystick’s
X-coordinate in a UART console.

Prints out the temperature value in a UART console (in
degrees Fahrenheit).

What if temp sensor does not work?
m Use the gyro x-axis
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10
i |
12
jlic:
14
15
16
1
18
19
20
21
22
23
24
25
26
27

#ifndef THREADS_H_
#define THREADS_H_

#include "G8RTOS.h"

#define JOYSTICKFIFO @
#define TEMPFIFO 1
#define LIGHTFIFO 2

semaphore_t *sensorMutex;

semaphore_t *LEDMutex;

void
void
void
void
void

void
void

BackGroundThread@(void);
BackGroundThreadl(void);
BackGroundThread2(void);
BackGroundThread3(void);
BackGroundThread4(void);

Pthread@(void);
Pthreadl(void);

#endif /x THREADS_H_ */

UF
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Implement Threads

2 periodic threads and 5 background threads

3 FIFOs and 2 Semaphores

BackGround Thread 2:
o Read the light sensor.
o Send data to light FIFO.
o Sleep for 200ms.

BackGround Thread 3:
o Read temperature FIFO.

o Output data to Red/Blue LEDs as shown in the figure.

Feel free to adjust or normalize the temperature values if

needed.
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Temp > 84

O30 O 03 00 7 O30 o

| 81 < Temp < 84 I

OO0O00O000NSEEENEE

| 78 < Temp < 81 I

O O3 00 O3 07 0 O 0 o o

| 75 <Temp <78 |
T

10000 0 07 07 07

| 72 <Temp <75 |

OOoO0O0000NENEEEEE

| 69 < Temp <72 |

ooooOo000NSeeeEEN

| 66 < Temp < 69 |

O0000000EEEEeEeE

I 63 < Temp < 66 | 29
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Implement Threads

L OOooOmEEEO00000000
e 2 periodic threads and 5 background threads
| -6000 > X-Coord > -8000 |
e 3 FIFOs and 2 Semaphores OO0O00EEEO000000000
| -4000 > X-Coord > -6000 |
° BackGround Thread 4: OooOoOomEOoooonooon
) Read the joyStiCk'S FIFO I 2000 > X-Coord > -4000 |
o Calculate decayed average: to calculate a 50% decaying OooOoEOO0O00o0ooooon
average, you will have an int32 t variable (eg, named [ 500> X-Coord > 2000 |
Avgqg). After getting a new value, Avg will be updated as OoOooooooooooood
| 500> X-Coord > -500 ‘
Avg = (Avg + value) >> 1 OOoOomO000000000000
| 2000> X-Coord > 500 |
e Output data to Green LEDs as shown in the figure. OooEEOooooooooooo
| 4000> X-Coord > 2000 ‘
OEEEO00000000000
| 6000> X-Coord > 4000 ‘
mEEEOO00000000000
| X-Coord > 6000 ‘ %0
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Your Feedback Summary

=> Positives

Good contents, utility for career options, good hands-on and theory balance, good slides.
The board setup is cool, manageable workload, templates are helpful.

The bonus points and questions in-class are great. Topics are well structured.

The book & slide contents are consistent with lab-work, RTOS seems manageable now.
TAs are awesome and very helpful. They try to accommodate based on given situations.

Rating (0-10)

= Things to improve: Count: 41

e Some OS concepts should be covered at the beginning; crash-course was useful but late. AVg:_ 9.42

e Some Lab-2 solutions are in the book, should have more challenging problems. GRS B
e Should have more TAs, office hours are sparse. Min: 7 (# 5)
e Lecture slides could be annotated. Lab solutions can be discussed. Ma>;: 12 (# 4)

= Other suggestions

Topics: varied opinions about depth and time-spent (slow/fast) on certain topics.
Labs: some theoretical/on-paper homeworks will be nice to complement the labs.
In-class: Sometimes the class is too quiet (speaker is not turned on always).
Others: ...
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= Lab-2 demo and quiz-1 ends this week

= Lab-3 demos start from next Monday (Oct 10th)

= Mid Exam

e October 14th Friday: regular class time
e Time: 40 minutes
e We will discuss question patterns and practice

questions in the coming weeks
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