
Improving Your G8RTOS
EEL 4745C: Microprocessor Applications II

Fall 2022

Md Jahidul Islam

Lecture 5

Overview

2

EEL 4745C: Microprocessor Applications II

● Discussions on: improving your G8RTOS implementation in Lab-2

● In Lab-3, you will do the following:
○ Improve semaphores using the blocking and yielding features
○ Add sleeping feature to background threads to free up CPU time as opposed to a delay
○ Integrate periodic threads in conjunction with multiple background threads, and
○ Implement IPC: Inter-Process Communication using FIFOs

● You have to demonstrate:
○ Periodic threads are working alongside background threads
○ Consistent IPC is happening based on FIFO principles
○ Joystick, temperature sensor, light sensors values are manipulated correctly

■ See the lab-3 manual for details

Improved Semaphore

3

EEL 4745C: Microprocessor Applications II

Blocked Semaphore

○ Previously, we implemented a simple spinlock semaphore; the continuous spin-locks
wasted CPU memory

○ We will improve this by adding a blocked flag in TCB structure. If the blocked flag was set,
the blocked thread will yield the CPU control to next thread during the SysTick handler.

4

EEL 4745C: Microprocessor Applications II

Improved “Semaphore Wait”

○ If the semaphore is not available

■ The blocked semaphore of running thread
should be initialized

■ Then yield control to the next available thread

Improved Semaphore: Wait

5

EEL 4745C: Microprocessor Applications II

Improved “Signal Semaphore”

○ If the semaphore is not available

■ Go through the TCB list and unblock the first
thread blocked on the same semaphore.\

■ Move that unlocked thread to the next thread
to be executed

Improved Semaphore: Signal

Improved TCB

6

EEL 4745C: Microprocessor Applications II

Sleeping

7

EEL 4745C: Microprocessor Applications II

● Active State: Thread is ready to run but waiting for its turn

● You Sleep State: Thread is waiting for a fixed amount of time before it enters the active state again

● Blocked State: Thread is waiting on some external or temporal event

● Blocking and sleeping help to free up the processor to perform other tasks as opposed to just

“spinning” (wasting its entire time slice checking if the event condition is met)

Using the Sleep Function

8

EEL 4745C: Microprocessor Applications II

● In the SysTick handler, check every sleeping thread’s sleep count

● If the thread’s sleep count is equal to the current SystemTime

○ Then that thread is to be wake up

○ Otherwise, it remains sleeping

Improved Scheduler

9

EEL 4745C: Microprocessor Applications II

Note: It is possible that all threads can be either
sleeping or blocked, in which case we enter an
infinite loop here.

How do we avoid this in Lab-3?

Improved SysTick Handler

10

EEL 4745C: Microprocessor Applications II

Loop through the periodic threads, and execute
them appropriately (if their time is now!)

Loop through the background threads: check
sleeping threads and wake them up appropriately
(if their time is now!)

Increments system time
Gets the current threads (periodic and background)

Context Switch

Alternate Sleeping Implementation

11

EEL 4745C: Microprocessor Applications II

● Another way to implement sleeping is to

○ Remove the new sleeping thread from the linked list of active threads, and

○ Insert it to a doubly linked list of sleeping threads

● This list of sleeping threads will be sorted from smallest to highest sleep count

● Once the thread with the lowest sleep count equals the system time, that thread is woken up

● Advantage:

○ Now we only have to check one sleeping thread’s sleep count within the SysTick handler

as opposed to every initialized thread

Lab-3 Bonus point: +1

Example: Alternate Sleep Function

12

EEL 4745C: Microprocessor Applications II

Linked List of Active Threads

Linked List of Sleeping Threads

13

EEL 4745C: Microprocessor Applications II

Linked List of Active Threads

Linked List of Sleeping Threads

Example: Alternate Sleep Function

14

EEL 4745C: Microprocessor Applications II

Linked List of Active Threads

Linked List of Sleeping Threads

Example: Alternate Sleep Function

15

EEL 4745C: Microprocessor Applications II

Linked List of Active Threads

Linked List of Sleeping Threads

Now that the System Time has

incremented enough times to

equal Thread D’s Sleep Count, it

is time to add Thread D back into

the Active Thread Linked List

Example: Alternate Sleep Function

16

EEL 4745C: Microprocessor Applications II

Linked List of Active Threads

Linked List of Sleeping Threads

Since the list of active threads is

Round-Robin (no priority), we can

simply add it to the back of the

linked list.

Example: Alternate Sleep Function

17

EEL 4745C: Microprocessor Applications II

Linked List of Active Threads

Linked List of Sleeping Threads

Previous and Next TCB pointers

are assigned accordingly

Example: Alternate Sleep Function

Periodic Threads

18

EEL 4745C: Microprocessor Applications II

● A periodic thread is simply a function that performs a unique task after a certain amount of time has passed

● There are a few ways to trigger periodic threads:

○ Hardware Timer

■ If the number of periodic tasks is small, we can allocate a unique hardware timer to each task.

■ Alternatively, we could use just one timer, give each periodic thread a current time and period,
and cycle through the events in round-robin fashion.

○ SysTick Timer

■ We can use the scheduler as the timer to call periodic events before performing a context switch.

■ This is how it will be implemented for G8RTOS!

Periodic Thread Control Block

19

EEL 4745C: Microprocessor Applications II

Adding a Periodic Thread in a Linked List

20

EEL 4745C: Microprocessor Applications II

Recall your implementation of the G8RTOS_AddThread function!

Periods with Common Multiples

21

EEL 4745C: Microprocessor Applications II

● Suppose two periodic events exist with the following periods:

● Task B will always occur immediately after Task A, because its period is a multiple Task A’s

● To combat this, we can give one P-Thread a difference initial current time other than 0

● Example:

○ Task A initial time = 0, Task B initial time = 1

○ Task A will run 3 times after 6 SysTick interrupts, and Task B will run on the 7th tick

● Note: In order for this system to work properly, the maximum time to execute each task must be very

short compared to the period of the SysTick to avoid missing interrupts

Periodic vs Sleeping Threads

22

EEL 4745C: Microprocessor Applications II

● Periodic threads are always in the active state

● Sleeping threads go between the active state and spinning in the sleep state

● Periodic threads ensure a periodic time more accurately

○ This is because when a thread is done sleeping, it doesn't necessarily mean it is currently

running, but simply means it is active and able to run when it is its turn

Inter-Process Communication

23

EEL 4745C: Microprocessor Applications II

● We implement the FIFO structure as IPC

○ First In First Out

● FIFO

○ Maintain a linked list/array as queue

○ Write to the end of queue

○ Read from the begin of queue

● You have to implement

○ FIFO Initialization

○ Read from FIFO

○ Write to FIFO

Implementing FIFO

24

EEL 4745C: Microprocessor Applications II

● Hints

○ No more than 4 FIFOs are needed in your G8RTOS

○ You can static define FIFOs with array to improve performance

○ Read/Write an int32_t data from/into FIFO each time

● Structures

○ Buffer where data will be held: Int32_t Buffer[FIFOSIZE]

○ Head pointer: int32_t *Head

○ Tail pointer: int32_t *Tail

○ Lost data count: uint32_t LostData

○ Current Size semaphore: semaphore_t CurrentSize

○ Mutex semaphore: semaphore_t Mutex

Read Function of FIFO

25

EEL 4745C: Microprocessor Applications II

● Parameter: an int32_t value, which FIFO should be read

● Return value: an int32_t value from the head of FIFO

● Mutex semaphore

○ Wait before reading from FIFO

○ In case the FIFO is being read from another thread

● Current Size semaphore

○ Wait before reading from FIFO

○ In case the FIFO is empty

● When read is complete:

○ Update the head pointer

○ Signal the Mutex semaphore so other waiting threads can read

26

EEL 4745C: Microprocessor Applications II

● Parameter:

○ An int32_t value, which FIFO should be read

○ An int32_t value, data to be written into the tail of FIFO

● Current Size semaphore

○ The value should be compared with the FIFOSIZE-1.

■ Provides 1 buffer cell in case an interrupt happens between
reading FIFO and incrementing its head.

■ If the value is larger than FIFOSIZE-1, increment the lost
data value and overwrite the old data.

● Write the data

○ Signal the Current Size semaphore and notify other waiting
threads the FIFO is not empty.

Write Function of FIFO

Implement Threads

27

EEL 4745C: Microprocessor Applications II

● 2 periodic threads and 5 background threads

● 3 FIFOs and 2 Semaphores

● BackGround Thread 0:
○ Empty default thread; does nothing (really?)

● BackGround Thread 1:
○ Read the BME280’s temperature sensor
○ Sends data to temperature FIFO
○ Sleep for 500ms

● Periodic Thread 0 (Period: 100ms):
○ Read X-coordinate from the joystick
○ Write data to Joystick FIFO

Implement Threads

28

EEL 4745C: Microprocessor Applications II

● Periodic Thread 1 (Period: 100ms):
○ Prints out the decayed average value of the joystick’s

X-coordinate in a UART console.
○ Prints out the temperature value in a UART console (in

degrees Fahrenheit).

○ What if temp sensor does not work?
■ Use the gyro x-axis

● 2 periodic threads and 5 background threads

● 3 FIFOs and 2 Semaphores

Implement Threads

29

EEL 4745C: Microprocessor Applications II

● BackGround Thread 2:
○ Read the light sensor.
○ Send data to light FIFO.
○ Sleep for 200ms.

● BackGround Thread 3:
○ Read temperature FIFO.
○ Output data to Red/Blue LEDs as shown in the figure.

Feel free to adjust or normalize the temperature values if
needed.

● 2 periodic threads and 5 background threads

● 3 FIFOs and 2 Semaphores

Implement Threads

30

EEL 4745C: Microprocessor Applications II

● BackGround Thread 4:
○ Read the joystick's FIFO.
○ Calculate decayed average: to calculate a 50% decaying

average, you will have an int32_t variable (eg, named
Avg). After getting a new value, Avg will be updated as

Avg = (Avg + value) >> 1

● Output data to Green LEDs as shown in the figure.

● 2 periodic threads and 5 background threads

● 3 FIFOs and 2 Semaphores

Your Feedback Summary

31

EEL 4745C: Microprocessor Applications II

⇒ Positives

● Good contents, utility for career options, good hands-on and theory balance, good slides.
● The board setup is cool, manageable workload, templates are helpful.
● The bonus points and questions in-class are great. Topics are well structured.
● The book & slide contents are consistent with lab-work, RTOS seems manageable now.
● TAs are awesome and very helpful. They try to accommodate based on given situations.

⇒ Things to improve:

● Some OS concepts should be covered at the beginning; crash-course was useful but late.
● Some Lab-2 solutions are in the book, should have more challenging problems.
● Should have more TAs, office hours are sparse.
● Lecture slides could be annotated. Lab solutions can be discussed.

⇒ Other suggestions

● Topics: varied opinions about depth and time-spent (slow/fast) on certain topics.
● Labs: some theoretical/on-paper homeworks will be nice to complement the labs.
● In-class: Sometimes the class is too quiet (speaker is not turned on always).
● Others: ...

Rating (0-10)
Count: 41

Avg: 9.42
Median: 9.4

Min: 7 (# 5)
Max: 12 (# 4)

Logistics

32

EEL 4745C: Microprocessor Applications II

⇒ Lab-2 demo and quiz-1 ends this week

⇒ Lab-3 demos start from next Monday (Oct 10th)

⇒ Mid Exam

● October 14th Friday: regular class time

● Time: 40 minutes

● We will discuss question patterns and practice

questions in the coming weeks

