
Dynamic Threads & LCD Interfacing
EEL 4745C: Microprocessor Applications II

Fall 2022

Md Jahidul Islam

Lecture 6

G8RTOS: Interfacing LCDs

2

EEL 4745C: Microprocessor Applications II

Lab4: Dynamic Threads and LCD Interfacing
● Part A: Interfacing LCD

○ Complete driver functions

● Part B.1: Priority Scheduler

○ Incorporate priority features into the round-robin algorithm

● Part B.2: Dynamic Thread Features

○ Thread creation and destruction

● Part B.3: Aperiodic Event Threads

○ Relocate ISRs interrupt vector

Demos are due: Oct 24 - Nov 03

Solutions upload: Nov 4th

Our TFT LCD

3

EEL 4745C: Microprocessor Applications II

● Single chip TFT LCD display

● 240x320 dot resolution (RGB)
● Internal 17.28KB graphic RAM

● System interfaces
○ parallel 8-/9-/16-/18-bit

data bus MCU interface
○ 6-/16-/18-bit data bus

RGB interface
○ 3-/4-line serial peripheral

interface (SPI)

● Touch screen interface: SPI

TFT LCD: Overview

4

EEL 4745C: Microprocessor Applications II

● LCD Displays stands for Liquid Crystal Displays
● TFT Displays stands for Thin Film Transistor

○ Mature technology with capacitors and transistors

○ Categorically referred to as active-matrix LCDs.

○ These LCDs can hold back some pixels while using other
pixels, hence they operate at a very low power

● Cannot release color themselves; rely on extra light source in
order to display (backlight)

● Widely used in embedded systems

● References

○ https://en.wikipedia.org/wiki/Thin-film-transistor_liquid-crystal_display

○ https://www.orientdisplay.com/knowledge-base/lcd-basics/lcd-vs-tft-ips-led-oled-display/

○ https://grobotronics.com/images/datasheets/xpt2046-datasheet.pdf

https://en.wikipedia.org/wiki/Thin-film-transistor_liquid-crystal_display
https://www.orientdisplay.com/knowledge-base/lcd-basics/lcd-vs-tft-ips-led-oled-display/
https://grobotronics.com/images/datasheets/xpt2046-datasheet.pdf

TFT LCD: Building Blocks

5

EEL 4745C: Microprocessor Applications II

● The display is constructed on top of a circuit board which houses the
connector and any controller chips that are necessary.

● The backlight is located on top of the circuit board, with the pixel
matrix sitting on top of the backlight.
○ The backlight is necessary for TFT LCD displays to allow the

display to be seen.
○ Without a backlight, a color TFT LCD will show no image.

● Pixel matrix is comprised of an array of pixels in height and width of
a certain color depth that make up the display.

● The touch sensor is optional and is located at the top of the stackup.
● References

○ https://www.digikey.com/htmldatasheets/production/1640716/0/
0/1/ili9341-datasheet.html

○ https://cdn-shop.adafruit.com/datasheets/ILI9325.pdf

○ https://www.adafruit.com/product/1770

https://www.digikey.com/htmldatasheets/production/1640716/0/0/1/ili9341-datasheet.html
https://www.digikey.com/htmldatasheets/production/1640716/0/0/1/ili9341-datasheet.html
https://cdn-shop.adafruit.com/datasheets/ILI9325.pdf
https://www.adafruit.com/product/1770

Part A: Important Driver Functions

6

EEL 4745C: Microprocessor Applications II

These functions are already implemented for you; see BSP drivers: ILI9341_Lib.c and ILI9341_Lib.h

● LCD_Init(): Enable/Initialize SPI/GPIO Peripherals

● PutChar(): Outputs a character to the display at some coordinate

 // This utilizes the ASCII library

● LCD_Text(): Outputs a string to the display at some coordinate

● LCD_WriteIndex(): Sets the address for the register we want to write.

● LCD_WriteData(): Writes 16-bit data to the register that is specified by

the LCD_WriteIndex() function

● LCD_Write_Data_Only(): Sends only data (useful for continuous transmission)

● TP_ReadXY(): Reads the tapped X and Y coordinates from the LCD.

Part A: Important Driver Functions

7

EEL 4745C: Microprocessor Applications II

You will need to implement these functions:

● LCD_DrawRectangle(): Draw a rectangle with a specified color.

● LCD_Clear(): Clear the screen with a specified color

● LCD_SetPoint(): Draw one pixel with specified coordinate and color.

● LCD_WriteReg(): Write data to the specified register.

● LCD_SetCursor(): Place the cursor at the specified coordinate.

● LCD_PushColor(): Set a pixel on the LCD to a specific color.

● LCD_SetAddress(): Set the draw area of the LCD.

Please look into the manual/datasheet to correctly implement these.

Feel free to implement any other functions you might need!

Example: Writing Pixels

8

EEL 4745C: Microprocessor Applications II

● Define a rectangular window of frame memory
● Use Column Address Set (0x2A) and Page Address

Set (0x2B) for setting: Start Column (SC), End
Column (EC); Start Page (SP) and End Page (EP).

LCD_SetAddress(x1, y1, x2, y2){

LCD_WriteIndex(0x2A);
LCD_WriteData(x1>>8);
LCD_WriteData(x1);
LCD_WriteData(x2>>8);
LCD_WriteData(x2);

LCD_WriteIndex(0x2B);
LCD_WriteData(y1>>8);
LCD_WriteData(y1);
LCD_WriteData(y2>>8);
LCD_WriteData(y2);

LCD_WriteIndex(0x2C); //memory write

}

Part B.1: Priority Scheduling

9

EEL 4745C: Microprocessor Applications II

● Why priority scheduling Instead of round-robin:
○ You might need something like a background thread that

always needs to execute as soon as possible.
○ For example, after tapping the LCD screen, a background

thread might need to be executed first to update the global
status as soon as possible.

● How to implement:
○ Maintain a variable currentMaxPriority to store the

priority level of the current running thread.
■ Initialize to 256 (lowest priority); highest priority is 0.

○ While scheduling another thread, check if its priority is less
than currentMaxPriority .

○ Modify G8RTOS_Launch to choose the thread with the
highest priority to run first.

Part B.1: Priority Scheduling

10

EEL 4745C: Microprocessor Applications II

Priority check pseudo code

Part B.2: Dynamic Thread Features

11

EEL 4745C: Microprocessor Applications II

● Dynamic thread creation and destruction
○ Modification: AddThread()
○ New function: KillThread() and KillSelf()

● Implementation:
○ Boolean (isAlive) to keep track of status: alive/dead
○ Integer (threadID) and character array (threadName):

■ To keep track of threads inside of the variable explorer
and overall debugging process.

■ Allow every thread to have its unique ID so that the
user can request the ID of the thread to be killed.

Part B.2: Dynamic Thread Features

12

EEL 4745C: Microprocessor Applications II

Modifications to AddThread()
● The AddThread function will now take in not only a

thread’s priority, but also its name/id to initialize.
● Since we want to be able to add a thread while our OS is

running, we will need to enter a critical section and exit it
prior to returning.

KillThread(threadId)

● This function will take in a threadId , indicating the
thread to kill. It takes care of the boundary conditions
(e.g.,: if no threads exist with that ID, only one thread
running).

KillSelf()

● This function will simply kill the currently running thread.

Example: Killing Threads

13

EEL 4745C: Microprocessor Applications II

KillThread(threadId)

● This function will take in a threadId , indicating the thread to
kill. It takes care of the boundary conditions (e.g.,: if no threads
exist with that ID, only one thread running).

● Procedure:
○ Enter a critical section
○ Return right error code if there’s only one thread running
○ Search for thread with the same threadId
○ Return error code if the thread does not exist
○ Set the threads isAlive bit to false
○ Update thread pointers
○ If thread being killed is the currently running thread, we

need to context switch once critical section is ended
○ Decrement number of threads
○ End critical section

Part B.3: Aperiodic Event Thread

14

EEL 4745C: Microprocessor Applications II

Definition: An event thread with an arrival pattern that lacks a bounded minimum interval between
subsequent instances.

Implementation:

○ Whenever you tap (use the LCD touchpad), we need to run an ISR. which is essentially an
aperiodic event thread.

○ We will need to initialize the appropriate NVIC (Nested Vectored Interrupt Controller) registers.

○ To add an aperiodic event, we provide it with

AddAPeriodicEvent(void(*AthreadToAdd)(void), uint8_t priority, int32_t IRQn)

■ A function pointer that will serve as the ISR, a priority, and
■ The IRQ (interrupt request) number: an assigned location where the computer can expect a

particular device to interrupt

○ The ISR interrupt vector table must be relocated to SRAM.
■ You can You can do this in G8RTOS_Init()
■ See the Lab-4 manual

What happens when Interrupt Occurs?

15

EEL 4745C: Microprocessor Applications II

Whenever a hard/soft exception occurs

● A function call and the required
response is executed in the form of a
piece of code known as a Service
routine (SR) or Interrupt Service
Routine (ISR).

● After that set of instructions in the
service, the routine is executed the
control shifts back to the main
program in which the interrupt
occurred.

NVIC in ARM Cortex-M

16

EEL 4745C: Microprocessor Applications II

‘Nested’: processing an interrupt (with
higher priority) with in another interrupt
(with lower priority).

● ARM Cortex-M microcontrollers have
0-255 exceptions/interrupts.

○ Each exception has a priority

○ System exceptions: 16 (0-15)

○ User interrupts 240 (16-255)

● The higher priority interrupts always
gets to execute before a lower priority
interrupts even if the lower priority
interrupts occurs earlier.

Read more at: here and here

https://microcontrollerslab.com/nested-vectored-interrupt-controller-nvic-arm-cortex-m/
https://interrupt.memfault.com/blog/arm-cortex-m-exceptions-and-nvic

G8RTOS Lab4

17

EEL 4745C: Microprocessor Applications II

https://youtu.be/umWUxbx3qZc

Lab4: Dynamic Threads and LCD Interfacing
● Part A: Interfacing LCD

○ Complete driver functions

● Part B.1: Priority Scheduler

○ Incorporate priority features into the
round-robin algorithm

● Part B.2: Dynamic Thread Features

○ Thread creation and destruction

● Part B.3: Aperiodic Event Threads

○ Relocate ISRs interrupt vector

http://www.youtube.com/watch?v=umWUxbx3qZc
https://youtu.be/umWUxbx3qZc

Lab4: Rules

18

EEL 4745C: Microprocessor Applications II

● Program will launch with a blank screen waiting for a tap.

● Once touched

○ A ball (4x4 rectangle in our case) should be drawn on the
screen with a random color.

○ You may use the time.h library for randomness

● Depending on the accelerometer X and Y values, the ball will
change directions smoothly.

● Every new ball created should have a random speed

○ Just use a scaling factor for its velocity.

● If any ball is touched, it should be deleted.

● There will be a maximum of 20 balls allowed at any point of time.

● If a ball hits an edge, it should wrap around to the other side.

https://youtu.be/umWUxbx3qZc

http://www.youtube.com/watch?v=umWUxbx3qZc
https://youtu.be/umWUxbx3qZc

Lab4: Workflow

19

EEL 4745C: Microprocessor Applications II

Initially, you will have the following threads active:

○ Read Accelerometer: background thread

○ LCD tap: aperiodic thread

○ Wait for tap: background thread

■ Waits for ISR flag, reads touch coordinates, then
determines whether to delete or add a ball.

■ If a ball is to be created: write the coordinates to a
FIFO and then create a Ball thread.

■ If a ball is to be deleted: wait for any semaphores
the ball thread might be using and call
G8RTOS_KillThread with the ball’s threadID .

■ Delay for some time to account for screen bouncing
before checking the touch flag again.

https://youtu.be/umWUxbx3qZc

http://www.youtube.com/watch?v=umWUxbx3qZc
https://youtu.be/umWUxbx3qZc

Lab4: Workflow

20

EEL 4745C: Microprocessor Applications II

Contd..

○ Ball thread: background thread

■ Finds a dead ball and makes it alive.

■ Reads FIFO and initializes coordinates accordingly.

■ Get threadID and store it; it is better if you use a struct
to hold all information about a ball

● Color, ID, position, and velocity.

● Alive or killed/blocked etc.

■ Within while(1):

● Move its position depending on velocity/acceleration.

● Update the ball on screen and sleep for some time.

https://youtu.be/umWUxbx3qZc

http://www.youtube.com/watch?v=umWUxbx3qZc
https://youtu.be/umWUxbx3qZc

Lab4: Logistics

21

EEL 4745C: Microprocessor Applications II

● Original deadline:
○ Original demo due: 10/24 - 10/27
○ Late demo (with -10% due): 10/24 - 11/03

● No late penalty till 11/03 (last day for lab-4 demo)
● Quiz #2: on the 10/31-11/03 dates in respective labs

● Driver issues: Point TP_ReadXY() function
○ Giving wrong X/Y values
○ Alternative solutions:

■ Delete the oldest ball, or
■ Delete the newest ball.

● Beagle-boards will be distributed next week
● Some project ideas will be discussed today!

Some Project Ideas

22

EEL 4745C: Microprocessor Applications II

Snake game

Tic tac toe

Sudoku

 Atari

 Pacman

Traffic signal simulator

Security panel
system

Home security manager

Tetris

Snake Game: RTOS Design

23

EEL 4745C: Microprocessor Applications II

Semaphores
○ Interfacing: joystick, leds, display
○ Shared Memory: FIFOs, snake body buffers
○ Database: levels, tables, scores

Scheduling algorithm: Round-robin + priority

● Background Threads
○ Joystick reader
○ Snake (linked list)
○ Board (2D array)

● Aperiodic event thread
○ Win condition
○ Lose condition

● Periodic thread
○ Draw canvas

● Buffers
○ Joystick values (FIFO)

○ Snake body points (linked list)

○ Point tables or difficulty levels?

24

EEL 4745C: Microprocessor Applications II

Snake Game: Data Structures
● Snake

○ Linked list of (x, y)
○ Head grows based

on joystick values

● Board
○ 2D array (0/1)
○ Updates snake and

goal values

○ Updates goal

● Move
○ Joystick FIFO

Snake Game: Memory Management

25

EEL 4745C: Microprocessor Applications II

● Joystick buffer: standard FIFO; same as Lab-3

● Snake body points: singly connected linked-list
○ Head grows, tail remains static
○ Opposite direction: reverse linked list?

● Canvas
○ Display board to the LCD through registers

○ Refresh and update periodically

○ Take care of win/lose situation (higher priority event)

● Database
○ Game levels, templates, point tables, etc.

