Dynamic Threads & LCD Interfacing

EEL 4745C: Microprocessor Applications |l
Fall 2022

Md Jahidul Islam

Lecture 6

) NIVERSITY
road= UF ¥1 ORIDA

G8RTOS: Interfacing LCDs

Lab4: Dynamic Threads and LCD Interfacing
e PartA: Interfacing LCD

o Complete driver functions

e Part B.1: Priority Scheduler

o Incorporate priority features into the round-robin algorithm
Demos are due: Oct 24 - Nov 03

e Part B.2: Dynamic Thread Features
Solutions upload: Nov 4th

o Thread creation and destruction

e Part B.3: Aperiodic Event Threads
o Relocate ISRs interrupt vector

2

UNIVERSITY af

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Our TFT LCD

e Single chip TFT LCD display

2. 43mm

R 1.70mm— [&——35.46mmn—y—>

e 240x320 dot resolution (RGB) ;z ey 8
. 16mm . 15mm—3
e Internal 17.28KB graphic RAM —
sl
e System interfaces
o parallel 8-/9-/16-/18-bit E £
data bus MCU interface 3 . X
o 6-/16-/18-bit data bus
RGB interface 2 +-——-
o 3-/4-line serial peripheral £ oy
interface (SPI) "‘:; S 14 e
XXX XXXXXXY Y] E
. 1 42.46mm ¥
e Touch screen interface: SPI oy o =
>8. 53mm< _>8 53mm<_
3
UF |[FLORIDA

EEL 4745C: Microprocessor Applications I

Department of Electrical
& Computer Engine

EEeE

TFT LCD: Overview

LCD Displays stands for Liquid Crystal Displays

TFT Displays stands for Thin Film Transistor
o Mature technology with capacitors and transistors
o Categorically referred to as active-matrix LCDs.

o These LCDs can hold back some pixels while using other
pixels, hence they operate at a very low power

Cannot release color themselves; rely on extra light source in
order to display (backlight)

Widely used in embedded systems

References

4

z

4

o

o https://en.wikipedia.org/wiki/Thin-film-transistor liquid-crystal display

o https://www.orientdisplay.com/knowledge-base/lcd-basics/lcd-vs-tft-ips-led-oled-display/

o https://arobotronics.com/images/datasheets/xpt2046-datasheet.pdf

EEL 4745C: Microprocessor Applications I

4

UF |[FLORIDA

https://en.wikipedia.org/wiki/Thin-film-transistor_liquid-crystal_display
https://www.orientdisplay.com/knowledge-base/lcd-basics/lcd-vs-tft-ips-led-oled-display/
https://grobotronics.com/images/datasheets/xpt2046-datasheet.pdf

TFT LCD: Building Blocks

The display is constructed on top of a circuit board which houses the
connector and any controller chips that are necessary.

The backlight is located on top of the circuit board, with the pixel
matrix sitting on top of the backlight.

o The backlight is necessary for TFT LCD displays to allow the
display to be seen.

o Without a backlight, a color TFT LCD will show no image.

Pixel matrix is comprised of an array of pixels in height and width of
a certain color depth that make up the display.

The touch sensor is optional and is located at the top of the stackup.
References

o https://www.digikey.com/htmldatasheets/production/1640716/0/
0/1/ili9341-datasheet.html

o https://cdn-shop.adafruit.com/datasheets/IL19325.pdf
o https://www.adafruit.com/product/1770

EEL 4745C: Microprocessor Applications I

Touch Sensor

LCD Pixel Matrix

Circuit Board

Connector

Backlight

Display Driver Chip

UF

Touch Controller Chip

5

UNIVERSITY af

FLORIDA

https://www.digikey.com/htmldatasheets/production/1640716/0/0/1/ili9341-datasheet.html
https://www.digikey.com/htmldatasheets/production/1640716/0/0/1/ili9341-datasheet.html
https://cdn-shop.adafruit.com/datasheets/ILI9325.pdf
https://www.adafruit.com/product/1770

Part A: Important Driver Functions

These functions are already implemented for you; see BSP drivers: ILI9341 Lib.c and ILI9341 Lib.h

LCD_Init(): Enable/Initialize SPI/GPIO Peripherals

PutChar(): Outputs a character to the display at some coordinate
// This utilizes the ASCII library

LCD_Text(): Outputs a string to the display at some coordinate

LCD_Writelndex(): Sets the address for the register we want to write.

LCD_WriteData(): Writes 16-bit data to the register that is specified by
the LCD_Writelndex() function

LCD_Write_Data_Only(): Sends only data (useful for continuous transmission)

TP_ReadXY(): Reads the tapped X and Y coordinates from the LCD.

6

UNIVERSITY af

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Part A: Important Driver Functions

You will need to implement these functions:

LCD_DrawRectangle(): Draw a rectangle with a specified color.
LCD_Clear(): Clear the screen with a specified color
LCD_SetPoint(): Draw one pixel with specified coordinate and color.

LCD_WriteReg(): Write data to the specified register.

LCD_SetCursor(): Place the cursor at the specified coordinate.
LCD_PushColor(): Set a pixel on the LCD to a specific color.
LCD_SetAddress(): Set the draw area of the LCD.
Please look into the manual/datasheet to correctly implement these.

Feel free to implement any other functions you might need!

7

UNIVERSITY af

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Example: Writing Pixels

e Define a rectangular window of frame memory SC[15:0] EC[15:0]
v

v

e Use Column Address Set (0x2A) and Page Address
Set (0x2B) for setting: Start Column (SC), End
Column (EC); Start Page (SP) and End Page (EP).

SP[15:0] >

LCD SetAddress (x1, yl, x2, y2){

LCD WriteIndex (0x2A) ;
LCD WriteData (x1>>8);
LCD WriteData (x1);
LCD WriteData (x2>>8) ;
LCD WriteData (x2) ;

EP[15:0] >

LCD WriteIndex (0x2B) ;
LCD WriteData (y1>>8);
LCD WriteData (y1);

LCD WriteData (y2>>8) ;
LCD WriteData (yZ2) ; Note: Each square is a pixel

LCD WriteIndex (0x2C); //memory write

} 8

Department of Flectical EEL 4745C: Microprocessor Applications |I UF|UF]\i‘8is{IfoA

& Computer Engineering

EEeE

Part B.1: Priority Scheduling

e Why priority scheduling Instead of round-robin:

o You might need something like a background thread that bool Alive
always needs to execute as soon as possible.

o For example, after tapping the LCD screen, a background uint8_t Priority
thread might need to be executed first to update the global

status as soon as possible. bool Asleep
e How to implement:

o Maintain a variable currentMaxPriority to store the uint32_t Sleep Count
priority level of the current running thread.

*
m Initialize to 256 (lowest priority); highest priority is O. Semaphore * Blocked

o While scheduling another thread, check if its priority is less = 5
than currentMaxPriority. TCB * Previous TCB

o Modify GBRTOS Launch to choose the thread with the TCB * Next TCB
highest priority to run first.

int32_t * Stack Pointer

9

UF |[FLORIDA

EEL 4745C: Microprocessor Applications I

Part B.1: Priority Scheduling

Struct : Thread Control Block
bool Alive

Priority check pseudo code

/* Priority of potential next thread to run */

uint8 t nextThreadPriority = UINT8_ MAX; z T
= 4 - uint8_t Priority

for(loop)
/* Check if Thread is blocked or asleep */ b001 ASleep
if InextThread.issleep() &% !nextThread.isblocked()
{ :
/* Check if priority is higher than current max */ u1nt32_t Sleep COU.Ilt
if nextThread.Priority less than nextThreadPriority
{ *
/* Set CurrentlyRunning thread to the next thread to run */ Semaphore BlOCked
CurrentlyRunningThread = nextThread
, nextThreadPriority = CurrentlyRunningThread.Priority; TCB * Previous TCB
}
*
nextThread = nextThread.nextTCB; TCB NeXt TCB
}

int32_t * Stack Pointer

10

Department of Electrical

EEL 4745C: Microprocessor Applications I UF|UFNI:‘8‘IS{TBA

Part B.2: Dynamic Thread Features

e Dynamic thread creation and destruction
o Modification: AddThread ()

Struct : Thread Control Block
o New function: KillThread () and KillSelf ()

e Implementation: char Threadname

o Boolean (isAlive) to keep track of status: alive/dead bool isAlive
o Integer (threadID) and character array (threadName):

m To keep track of threads inside of the variable explorer
and overall debugging process. bool Asleep

m Allow every thread to have its unique ID so that the uint32_t Sleep Count
user can request the ID of the thread to be killed.

uint8_t Priority

Semaphore * Blocked
TCB * Previous TCB
TCB * Next TCB
int32_t * Stack Pointer

1

EEL 4745C: Microprocessor Applications I UF|UFNI'J‘8‘ﬁf]Yj’A

Part B.2: Dynamic Thread Features

Modifications to AddThread ()

e The AddThread function will now take in not only a
thread’s priority, but also its name/id to initialize.

e Since we want to be able to add a thread while our OS is
running, we will need to enter a critical section and exit it char Threadname

prior to returning. o
bool isAlive

i

KillThread (threadId) uint8_t Priority
e This function will take in a threadId, indicating the T
thread to kill. It takes care of the boundary conditions P
(e.g.,: if no threads exist with that ID, only one thread uint32_t Sleep Count
running).
Semaphore * Blocked
KillSelf () TCB * Previous TCB
e This function will simply kill the currently running thread. TCB * Next TCB

| int32_t * Stack Pointer

12

UNIVERSITY of

EEL 4745C: Microprocessor Applications |l UF|FLORIDA

Example: Killing Threads

KillThread (threadId)

e This function will take in a threadId, indicating the thread to
kill. It takes care of the boundary conditions (e.g.,: if no threads
exist with that ID, only one thread running).

e Procedure: char Threadname

o Enter a critical section bool isAlive

o Return right error code if there’s only one thread running

_ uint8_t Priority
o Search for thread with the same threadld

o Return error code if the thread does not exist bool Asleep
o Set the threads isAlive bit to false uint32_t Sleep Count
o Update thread pointers

il

Semaphore * Blocked
o If thread being killed is the currently running thread, we TCB * Previous TCB
need to context switch once critical section is ended

o Decrement number of threads TCB * Next TCB
o End critical section int32_t * Stack Pointer

13

UNIVERSITY of

EEL 4745C: Microprocessor Applications |l UF|FLORIDA

Part B.3: Aperiodic Event Thread

Definition: An event thread with an arrival pattern that lacks a bounded minimum interval between
subsequent instances.

Implementation:

o Whenever you tap (use the LCD touchpad), we need to run an ISR. which is essentially an
aperiodic event thread.

o We will need to initialize the appropriate NVIC (Nested Vectored Interrupt Controller) registers.

o To add an aperiodic event, we provide it with
AddAPeriodicEvent (void (*AthreadToAdd) (void), uint8 t priority, int32 t IRQn)

m A function pointer that will serve as the ISR, a priority, and

m The IRQ (interrupt request) number: an assigned location where the computer can expect a
particular device to interrupt

o The ISR interrupt vector table must be relocated to SRAM.
= You can You can do this in GBRTOS _Init()

m See the Lab-4 manual y

UNIVERSITY of

EEL 4745C: Microprocessor Applications I UF|FLORIDA

What happens when Interrupt Occurs?

Whenever a hard/soft exception occurs

Instruction 1
e A function call and the required Program —
. . Flow otriiots 9
response is executed in the form of a . Instruction 2 ¢
. . [—.
p /ec.e of code known as a Serjwce Instruction 3 Interrupt Interrupt
routine (SR) or Interrupt Service Instruction 1 Routine
. . e —————
Routine (ISR) Instruction 4 Interrupt
Instruction 2
; ; ; | |
e After that set of instructions in the gtiﬁ%ti — —
service, the routine is executed the \y &
control shifts back to the main _ = & SIS
.) . Instruction 5 Instruction 4
program in which the interrupt
occurred. Program Instruction 6
Flow

Instruction 7

Instruction 8

15
EEE temmeteee EEL 4745C: Microprocessor Applications I UF UFNILVSIS&]Y)A

NVIC in ARM Cortex-M

‘Nested’: processing an interrupt (with

higher priority) with in another interrupt Microcontroller
(with lower priority). Cortex-M processor
Peripheral o
> NMI 1)
e ARM Cortex-M microcontrollers have) __) Processor
. . Core
0-255 exceptions/interrupts. o < NVIC
o Each exception has a priority i E RQs > System
> < Exceptions
o System exceptions: 16 (0-15)
. = /0 port
o Userinterrupts 240 (16-255) SysTick timer
——} /O port

e The higher priority interrupts always
gets to execute before a lower priority
interrupts even if the lower priority
interrupts occurs earlier.

Read more at: here and here

16

UNIVERSITY af

EEL 4745C: Microprocessor Applications I UF|FLORIDA

https://microcontrollerslab.com/nested-vectored-interrupt-controller-nvic-arm-cortex-m/
https://interrupt.memfault.com/blog/arm-cortex-m-exceptions-and-nvic

G8RTOS Lab4

Lab4: Dynamic Threads and LCD Interfacing
e PartA: Interfacing LCD

o Complete driver functions

e Part B.1: Priority Scheduler

o Incorporate priority features into the
round-robin algorithm

e Part B.2: Dynamic Thread Features

o Thread creation and destruction

e Part B.3: Aperiodic Event Threads
o Relocate ISRs interrupt vector

https://youtu.be/lumWUxbx3qZc

17

E@-E ‘&Degjgg"ujzﬁ‘é;;':;ﬂf:g' EEL 4745C: Microprocessor Applications II UF|UFY‘8zliIiBIf\

http://www.youtube.com/watch?v=umWUxbx3qZc
https://youtu.be/umWUxbx3qZc

Lab4: Rules

e Program will launch with a blank screen waiting for a tap.
e Once touched

o Aball (4x4 rectangle in our case) should be drawn on the
screen with a random color.

© You may use the time.h library for randomness

e Depending on the accelerometer X and Y values, the ball will
change directions smoothly.

e Every new ball created should have a random speed

https://youtu.be/lumWUxbx3qZc

o Just use a scaling factor for its velocity.
e If any ball is touched, it should be deleted.
e There will be a maximum of 20 balls allowed at any point of time.

e If a ball hits an edge, it should wrap around to the other side.

18

UNIVERSITY af

EEL 4745C: Microprocessor Applications I UF|FLORIDA

http://www.youtube.com/watch?v=umWUxbx3qZc
https://youtu.be/umWUxbx3qZc

Lab4: Workflow

Initially, you will have the following threads active:
o Read Accelerometer: background thread
o LCD tap: aperiodic thread
o Wait for tap: background thread

m Waits for ISR flag, reads touch coordinates, then
determines whether to delete or add a ball.

m If a ball is to be created: write the coordinates to a
FIFO and then create a Ball thread.

m If a ball is to be deleted: wait for any semaphores
the ball thread might be using and call
G8RTOS KillThread with the ball's threadID.

m Delay for some time to account for screen bouncing
before checking the touch flag again.

EEL 4745C: Microprocessor Applications I

https://youtu.be/lumWUxbx3qZc

UF

19

UNIVERSITY af

FLORIDA

http://www.youtube.com/watch?v=umWUxbx3qZc
https://youtu.be/umWUxbx3qZc

Lab4: Workflow

Contd..
o Ball thread: background thread
m Finds a dead ball and makes it alive.
m Reads FIFO and initializes coordinates accordingly.

m Get threadID and store it; it is better if you use a struct
to hold all information about a ball

Color, ID, position, and velocity.
Alive or killed/blocked etc.
m Within while(1):

Move its position depending on velocity/acceleration.

Update the ball on screen and sleep for some time.

EEL 4745C: Microprocessor Applications I

https://youtu.be/lumWUxbx3qZc

20

UF |[FLORIDA

http://www.youtube.com/watch?v=umWUxbx3qZc
https://youtu.be/umWUxbx3qZc

Lab4: Logistics

Original deadline: roint Teadht()

o Original demo due: 10/24 - 10/27 ot s
o Late demo (with -10% due): 10/24 - 11/03 ael

WriteTP_CS(Q);
SSIO_DR_R = (CHX); //Reads X data
while(SSIBusy(SSI@_BASE));

® No late penalty till 11/03 (last day for lab-4 demo) highByte = SSTo_DR_R;

while(SSIBusy(SSIO_BASE));

® Quiz #2: on the 10/31-11/03 dates in respective labs lowByte = SSTO_DR_R;

while(SSIBusy(SSI@_BASE));

coor.x = highByte << 8; /* Read D8..D15 */
coor.x |= lowByte; /* Read DO..D7 */
e Driverissues: Point TP ReadXY () function coor.x >>= 4; //Accounts for offset and scales down
- coor.x —= 190;

coor.x *= (ADC_X_INVERSE * MAX_SCREEN_X);

o Giving wrong X/Y values

SSI@_DR_R = (CHY); //Reads Y data

e} Alternatlve Solutlons while(SSIBusy(SSI@_BASE));

highByte = SSI@_DR_R;
while(SSIBusy(SSI@_BASE));

m Delete the oldest ball, or LowByte = SSIO_DR_R:

while(SSIBusy(SSIO_BASE));

m Delete the newest ball.

coor.y = highByte << 8; /* Read D8..D15 */
coor.y |= lowByte; /* Read DO..D7 */
coor.y >>= 4; //Accounts for offset and scales down

coor.y —-= 140;

e Beagle-boards will be distributed next week Coor.y #= (ADC_Y_INVERSE * NAX_SCREEN_Y);

WriteTP_CS(1);

e Some project ideas will be discussed today!

return coor;

21

UNIVERSITY af

EEE temmeteee EEL 4745C: Microprocessor Applications I UF|FLORIDA

Some Project Ideas

=lllll=...-.--. DE I 5 CLLEL] E CLLLLLL wnmns = A
o o H 5 120: A
: : =F Pacman ﬂ
Elllllll =.= D :-o-o:--.-o: :o.-..:..--: D
g i) . -U: . °
1 s

NELCREIUL ——

L

H
(] 1
] !

t

- - n + - A - =
.

R -E b - = -

=

. [N

) t

ic sigrial,

Department of Electrical 474 oprocessor App o)

EEeE

& Computer Engineering

< Oashbowrd
W Camens Ontee
? we ‘o

[-
OMe SECUTITY TTTc Terer e

DONKEY KONG ‘;
Con ou sve Moy |
gir rom e clutches of |
Dostey Koog? [

:52} |
O

A el]
E ENTERTYEM

-Téd |
(s
Y

| 9n0X AZNNOG

NMENT |

Snake Game: RTOS Design

e Background Threads EEEEEEE
o Joystick reader - ——
> Snake (linked list) - -
o Board (2D array) =.....-. =ll
o |
e Aperiodic event thread = =
CEOEEEAENNEEDOEEEREENE o
o Win condition B
o Lose condition E
e Periodic thread E
o Draw canvas w
e Buffers Semaphores
o Joystick values (FIFO) o Interfacing: joystick, leds, display

o Shared Memory: FIFOs, snake body buffers
o Database: levels, tables, scores

(@)

Snake body points (linked list)

o Point tables or difficulty levels?
Scheduling algorithm: Round-robin + priority

23

UNIVERSITY of

EEL 4745C: Microprocessor Applications I UF|FLORIDA

Snake Game: Data Structures

e Snake
o Linked list of (x, y)

o Head grows based
on joystick values

(3,1)-head

e Board (4,3)-tail
o 2D array (0/1)
o Updates snake and & == (2,1)-head
goal values "

o Updates goal ,
2,1) N

* Move Time (t+1) (3.2)

o Joystick FIFO (4,3)-tail

EEL 4745C: Microprocessor Applications I UF|UF'\’I:‘8‘1§'ﬁ’j’A

Snake Game: Memory Management

e Joystick buffer: standard FIFO; same as Lab-3

Score: 0 Highest Score: 44
e Snake body points: singly connected linked-list
o Head grows, tail remains static
o Opposite direction: reverse linked list?
||

e Canvas

o Display board to the LCD through registers

o Refresh and update periodically

o Take care of win/lose situation (higher priority event)

e Database

o Game levels, templates, point tables, etc.

25

UNIVERSITY of

EEL 4745C: Microprocessor Applications I UF|FLORIDA

