
EEL 4745C: Microprocessor Applications 2
Lab ①: Basic Interfacing, Linking, and Communication

Fall 2022

OBJECTIVES
In this lab, you will interface an LED driver with the
TIVA launchpad by following its I2C communication
protocol. You will write some driver modules as well as
I2C functions to complete and demonstrate your full
understanding. You will also learn to link assembly
functions to your C code, particularly for checksum
validation of integer data. Lastly, you will experiment
with the basics of UART communication and configure
console I/O for Tiva in CCS.

REQUIRED MATERIALS
Hardware

● Tiva TM4C123GH6PM Launchpad
● LP3943 LED array modules (that are already)

integrated to your daughterboard
● Laptop workstation with CCS setup

Software
● TivaWare and Board Support Package (BSP)
● Skeleton code provided for Lab 1

Documentations
● TM4C123GH6PM manual and datasheet
● LP3943 manual and datasheet
● Lecture 2 contents
● Feel free to use books or browse the internet!

Wiki++
● https://en.wikipedia.org/wiki/Magic_square
● https://en.wikipedia.org/wiki/Fletcher's_checksum
● https://en.wikipedia.org/wiki/uart
● https://en.wikipedia.org/wiki/I%C2%B2C

Part A: Interfacing LED drivers, I2C communication

MOTIVATIONS
When working with embedded systems, you will need
to interface with external devices. Communication with
external devices can be parallel or serial in nature.
Serial methods of communication are extremely
common because they decrease the number of lines
or traces that need to connect the master and slaves.
During this semester, and for years to come, you will
find I2C useful because a very large number of
devices can be addressed using only two lines or
traces. This exercise will introduce you to the registers
used by the TM4C123 for I2C communications, and
prepare you to interface with external devices.

PREPARATION
- If you haven’t read the manual for the LP3943

and the I2C section of the TM4C123GH6PM
manual, stop and do so now.

- See the Lecture 2 materials thoroughly

LED DRIVER BASICS
We will be controlling 16 RGB LEDs, which means
that we will be powering 48 individual LED channels.
This is a major reason to use an LED driver, we don’t
lose 48 GPIO channels for LEDs. Instead, we will be
using three LED drivers, one for the red, blue, and
green channels of each LED.

The LED drivers we have chosen are not just a simple
driver, they also are small microcontrollers that can
generate a PWM signal on each of their 16 LED
channels. This is very useful because we can use the
duty cycle of the PWM signal to dim or brighten each
channel. In effect this will allow us to create any visible
color by combining different brightness values of the
red, green, and blue channels of each LED. This is the
same process used by your phone, tablet, and
computer screens. You are not required to use the
LEDs in PWM mode, but +1 bonus point if you do so!

ASSIGNMENT
You will implement some functions for the LED driver
library (we provided) to establish I2C communication
with the LP3943s on your board. Your code should
have all detailed instructions on which functions to
implement and how! Please understand the given
library functions and skeleton provided to you. In
particular, pay attention to these files/functions:

● main.c, I2CDriver.c, and I2CDriver.h
● Board Support Package > I2C.h and I2C.c
● And cross-reference the functions or variables

called by called/used from these scripts

PRE-LAB QUESTIONS
● What is the maximum clock speed of the LP3943?
● In your own words, sketch and describe the I2C

communication process for the LP3943

IN-LAB REQUIREMENTS
Complete the LED driver and I2C functions outlined in the
given code and run your code on any (16-bit) integer and
display the result in LEDs.

Part B: Linking assembly functions to drive the LEDs

MOTIVATIONS
Writing assembly code is needed when creating low
level performance-critical code. In Lab 2, you will be
writing the core sections of the G8RTOS operating
systems. Some of these sections will need to be
written in assembly. This lab will help you familiarize
yourself with ARM Thumb2 Assembly programming;
in particular, you will implement the useful concept of
Fletcher’s 16-bit checksum algorithm on a predefined
2D array, ie, a 3x3 or 4x4 magic square.

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 1

https://en.wikipedia.org/wiki/Magic_square
https://en.wikipedia.org/wiki/Fletcher's_checksum
https://en.wikipedia.org/wiki/uart
https://en.wikipedia.org/wiki/I%C2%B2C


Moreover, checksums are widely used to check if a
data transfer was valid. Learning checksum algorithms
are extremely important in the world of digital data
communication and embedded computing. This is
even more important for space embedded computing
because solar radiation is known to flip random bits
during a data transfer process.

CHECKSUM BASICS
There are many types of algorithms for computing
checksum: fast algorithms use bitwise operations (eg,
parity, xor, additions); moderately fast algorithms (eg,
Fletcher, Alder); and slow algorithms (eg, CRS - cyclic
redundancy checks). In particular, Fletcher checksum
works as follows:

● Define two temporary variables: sum1 and
sum2 that are twice as large as the data type

● Accumulate sum1 over the data set
● Each time sum1 is updated, the new value of

sum1 is added onto sum2
● To assure no overflow, use a modulo 255

operation each time a sum is computed
● Return a concatenation of sum2 (MSBs) and

sum1 (LSBs)
See the Lecture 2 slides for more details!

ASSIGNMENT
You need to write an assembly function that
implements the Fletcher-16 algorithm and a C main
function that calls it and compares the output to a C
implementation. The final output needs to be shown
as a 16-bit number in the LEDs.

The main.c program should create a 4x4 or 3x3 magic
square matrix of uint8_t data type. See the template
code provided for your convenience; please follow the
guidelines to mimic the C version and complete the
corresponding assembly function. Be careful how you
address the individual bytes in assembly (look at the
instruction set carefully). To help you get started, the
modulo 255 function is already implemented (callable
C function) and the whole main.c pipeline is given to
you as a skeleton code.

Once you get the LED output, you can check whether
the comparison is correct or not. Both the C and
assembly function should give the same output, which
should match with your calculations!

PRE-LAB QUESTIONS
● Given an array of integers, can you compute the

Fletcher-16 checksum simulation yourself?

IN-LAB REQUIREMENTS
Complete the assembly function implementation and demo
Fletcher checksum for a magic matrix in the LEDs as the
output; a different matrix will be provided in the lab.

Part C: Basic UART with LED driver and console I/O

MOTIVATIONS
UART communication was a major focus in your
previous (uP) course, so we will not spend too much
time on this. However, UART concepts are very
important to learn and implement for numerous
embedded application scenarios. In particular for you,
this will help you quickly debug and display content of
variables rather than tracking register values and so
on. Besides, we will use UART to display sensory
outputs in future lab assignments as well.

ASSIGNMENT
Complete the UART initialization function provided in
the code template; then configure the console COM
port correctly to establish communication. Use built-in
library functions such as the UARTprintf for validation.

I2C vs UART BASICS
I2C (Inter-Integrated Circuit) is a synchronous
communication protocol, used to transfer data using a
master-slave (bidirectional) framework. It is a two-wire
serial bus that uses serial clock (SCL) and serial data
(SDA) wires to send and manage data bit by bit
between devices connected to the bus.

Unlike I2C, UART (Universal Asynchronous Receiver/
Transmitter) is a physical circuit that incorporates two
devices for serial asynchronous communication. It
doesn’t operate using a clock so it is necessary for the
baud rates of each UART to be within 10% of each
other to prevent data loss. Moreover, it requires Tx-Rx
(ie, transmission-receiver) agreement between the two
devices ahead-of-time.

PRE-LAB QUESTIONS
● What are the major differences and similarities

between I2C & UART communication?
● In which cases you will use one over the other?

IN-LAB REQUIREMENTS
Demo the same Fletcher checksum for a magic matrix in the
console!

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 2


