
EEL 4745C: Microprocessor Applications 2
Lab ②: G8RTOS Scheduler and Synchronizers

Fall 2022

OBJECTIVES
In this lab, you will implement the basic structures and
functionalities necessary for all the major operational
components of your G8RTOS. You will implement
multiple threads for specific tasks, a thread scheduler,
and simple spin-lock semaphores to allow thread
synchronization. The main goal is to get a hands-on
understanding on how to ensure mutually exclusive
access of shared resources in an RTOS.

REQUIRED MATERIALS
Hardware

● Tiva TM4C123GH6PM Launchpad
● LP3943 LED array modules (that are already)

integrated to your daughterboard
● Sensors Booster Pack
● Laptop workstation with CCS setup

Software
● TivaWare and Board Support Package (BSP)
● Skeleton code provided for Lab 2

Documentations
● TM4C123GH6PM manual and datasheet
● LP3943 manual and datasheet
● Sensors Booster Pack datasheet
● Lecture 3 contents
● Feel free to use books or browse the internet!

MOTIVATIONS
This laboratory is the heart of this uP2 course:
implementing your own RTOS (aka G8RTOS) and its
computational components. These concepts are going
to help you in many ways while working with
multithreaded embedded systems. You will be able to
write your threads for specific tasks, without messing
up the existing ones. This lab will enable your
understanding of how shared resources need to be
regulated, what sorts of issues may arise, and how to
solve them. The assembly linking and I2C/UART
communication exercises you have done on Lab 1 will
come in handy as well. You will get to dive deeper into
the TIVA TM4C123GH6PM programming and learn
how to properly manage sensory integration via
multiple threads and semaphores in G8RTOS.

IN-LAB REQUIREMENTS
Lab 2 spans weeks 3-5. The demo is due in the first hour of
week 5; then there will be an in-lab quiz. We will not grade
you till week 5, but we expect you to complete: Part A by
week 3, Part B-C by week 4, and the rest by week 5.

PRE-LAB QUESTIONS
● What are deadlocks in a multithreaded system?
● What are the differences: i) thread vs semaphore;

ii) thread vs process; iii) semaphore vs mutex?

Part A: Setting up BSP, drivers, and OS structure

The first thing to do after creating your empty project
is to set up the given BSP (Board Support package)
and G8RTOS_Lab2 libraries. Moreover, the LED
Drivers you created in your previous lab will need to
be integrated in BSP. To do this, follow these steps:

● Add your C and H files to the BoardSupport
src and inc folders in your project.

● In BSP.h add an #include to your H file
● In BSP.c add your initialization function into

the InitializeBoard function

Note: these steps are probably already done in the
provided code template for lab 2. If you are not
confident about your LED drives, please check the
Lab 1 solutions (when out) to update the LedModeSet
and PWMColorSet functions. Same applies for the I2C
driver C and H files. See the additional functionalities
(I2C for LED and sensor) in the BSP>src.

Create OS structures
File: G8RTOS_Lab2/G8RTOS_Structures.h

The Thread Control Block (TCB) is responsible for
holding all relevant information regarding the status of
a given thread. For this lab, it should contain the
following fields:

● Next TCB pointer
● Previous TCB pointer
● Stack pointer for the thread’s stack

Create the TCB structure in the appropriate header
file. See comments for supporting details. You will add
additional fields in subsequent labs.

Complete the initialization
File: G8RTOS_Lab2/G8RTOS_Scheduler.c

Implement these two functions:
● InitSysTick: this initializes the SysTick and

SysTick Interrupt, which will be responsible for
starting context switching of threads. Hints:

○ Initialize SysTick to overflow every
1ms. You may use SysCtlClockGet()
to get the current clock speed in Hz.

○ You can also use the BSP systick
functions to do this.

● G8RTOS_Init: this will be the first function
called in your RTOS project. The function
needs to accomplish the following:

○ Initialize system time to zero
○ Set the number of threads to zero
○ Initialize all hardware on the board

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 1

Part B: Threads, exception handlers, and schedulers

Implement G8RTOS_AddThread
File: G8RTOS_Lab2/G8RTOS_Scheduler.c

The G8RTOS_AddThread function will take in a
void/void function pointer to insert the thread into the
scheduler. It should accomplish the following:

● Initialize a TCB for the given thread
● Add TCB to the Round-Robin scheduler list
● Initialize the thread stack to hold a default

thread register context

Implement Exception Handlers
File: G8RTOS_Lab2/G8RTOS_Scheduler.c and

G8RTOS_Lab2/G8RTOS_SchedulerASM.s

To accomplish multithreading, you need to enable the
exception handler to begin context switching.

● The PendSV_Handler will be used to save a
thread’s context, call the scheduler, and load
the next scheduled thread’s context. You will
need to write this handler in assembly (ie, in
the G8RTOS_SchedulerASM.s file), so that
you have direct access to the CPU registers.

● Additionally, the SysTick_Handler function in
G8RTOS_Scheduler.c will be used to provide
a constant quantum for each thread before
preemption. For this lab, this handler will
simply trigger the PendSV exception. This
function is implemented for you (because we
will do much more in Lab 3 on this).

Implement G8RTOS_Scheduler
File: G8RTOS_Lab2/G8RTOS_Scheduler.c

The scheduler will be called by the PendSV_Handler
and will be responsible for choosing the next TCB to
run. For this lab’s Round-Robin scheduler, the
G8RTOS_Scheduler function will set the pointer,
CurrentlyRunningThread, to the currently running
thread’s ‘next’ (nextTCB). Hint: it can be accomplished
in just one line!

Part C: Semaphores & peripheral controls

Implement G8RTOS_Launch and G8RTOS_Start
File: G8RTOS_Lab2/G8RTOS_Scheduler.c and

G8RTOS_Lab2/G8RTOS_SchedulerASM.s

After successful completion of Part A-B features, your
G8RTOS will be ready to launch. To start the OS, you
must arm the SysTick and PendSV exceptions, set the
CurrentlyRunningThread to the first thread in the
scheduler, load the context of that thread into the
CPU, and enable interrupts.

This task will be split into two functions.
● G8RTOS_Launch: This C function is called

from main and it should do the following:
○ Set CurrentlyRunningThread
○ Initialize SysTick
○ Set the priorities of PendSV and

SysTick to the lowest priority
○ Call G8RTOS_Start
○ Hint: There are many useful BSP

functions (in interrupt.c, systick.c, etc.)
that you can/should utilize to your
advantage. Don’t reinvent the wheel!

● G8RTOS_Start: This assembly function should
do the following:

○ Load the currently running thread’s
context into the CPU

○ Enable interrupts

Testing the Scheduler
File: main.c
At this point you will write three simple threads to make
sure your scheduler works before adding semaphores
or peripheral controls. One simple way to do this:

● Create three functions called task0, task1, and
task2 in your main.c

● Each task function will increment their own
counter variable. Name them accordingly: task0
has counter0, task1 has counter1, etc.)

● Call G8RTOS_Init, add the threads to your
scheduler, and launch the OS

● Note: this step is only for testing, not for demo
or any other purposes.

Implement Semaphore Functions
File: G8RTOS_Semaphores.c

You will now add the ability to synchronize threads and
control peripheral access through a naive spinlock
semaphore implementation.

● G8RTOS_InitSemaphore: This function will
assign the semaphore pointer parameter the
value of the value parameter. Note: This should
all be accomplished in a critical section!

● G8RTOS_WaitSemaphore: This function will
check if the given semaphore parameter is
greater than 0. If it is not, it will constantly
check until it is. During this “spinlock”, the
function will exit and reenter a critical section to
allow other threads to run. After the spinlock,
the semaphore will be decremented to indicate
ownership of the semaphore.

● G8RTOS_SignalSemaphore: This function will
increment the semaphore to indicate releasing
ownership of the semaphore. Note: This is also
a critical section!

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 2

Part D: Finally, Add Threads for Sensory Interfacing

You will need to implement three threads for three
different tasks; specifically, we want to interface the
accelerometer, light sensor, and gyro of the sensor
booster pack. Three threads will communicate with
these on-board sensors to accomplish the following.

Thread 0
● Wait for the sensor I2C semaphore.
● Read from the accelerometer’s x-axis and

save the value into a local variable.
● Release the sensor I2C semaphore.
● Wait for the LED I2C semaphore.
● Output data to Red LEDS (see Figure A).
● Release the LED I2C semaphore.

Figure A: Sample output for the Thread0 based on the
accelerometer’s x-axis values; remember, specific values do
not matter much, but the red LED patterns are changing
proportionately with Accel X changes. (best at 200% zoom)

Thread 1
● Wait for the sensor I2C semaphore.
● Read from the light sensor and save the value

into a local variable.
● Release the sensor I2C semaphore.
● Wait for the LED I2C semaphore.
● Output data to Green LEDS (see Figure B).
● Release the LED I2C semaphore.

Figure B: Sample output for the Thread1 based on the light
sensor values; again the specifics does not matter; you can
cover the light sensor with hand, turn-off lights, or use
cell-phone flashlights on the sensors - to check whether your
green LEDs change accordingly. (best at 200% zoom)

Thread 2
● Wait for the sensor I2C semaphore.
● Read from the gyro’s z-axis and save the value

into a local variable.
● Release the sensor I2C semaphore.
● Wait for the LED I2C semaphore.
● Output data to Blue LEDS (see Figure C).
● Release the LED I2C semaphore.

Figure C: Sample output for the Thread2 based on the gyro’s
z-axis values; same instructions apply. Lift your board and
change its gyro for code validation! (best at 200% zoom)

Implementation Instructions:
● Threads.c (in the root directory) should hold all

threads and semaphores.

● Threads.h should reference all semaphores to
be initialized and the threads for main to see. It
will also hold extern declarations of all the
threads as well as extern declarations of the
sensor and LED semaphores.

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 3

Part E: Putting it all together!

Alrighty, if you made it thus far - it is time to put everything together and check your G8RTOS end-to-end.
Complete the main function, ie, update your main.c to do the following:

● Call G8RTOS_Init to initialize the OS
● Initialize the semaphores (LED I2C and sensor I2C)
● Add the threads in Threads.h and complete the functionalities in Thread.c
● Integrate the schedulers and you are good to o
● Finally, launch the OS and test each thread

Checkout the Lab 2 template code. You should open your own project and integrate each module there, it is not
the best idea to start from the given template (some machine-level issues may occur). Your project skeleton
should look like the following:

Get started with this as early as possible. It is an assignment that demands time - so be patient and be
thorough. All the very best!

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 4

