
EEL 4745C: Microprocessor Applications 2
Lab ③: G8RTOS Periodic Threads and Queueing

Fall 2022

OBJECTIVES
In the previous lab (#2), you implemented the basic
structures and operational components of G8RTOS.
There were many inefficient functionalities, which we
will address in this lab. Specifically, you will:

● Improve semaphores using the blocking and
yielding features;

● Add sleeping feature to background threads to
free up CPU time as opposed to a delay;

● Integrate periodic threads in conjunction with
multiple background threads; and

● Implement IPC: Inter-Process Communication
using FIFOs.

REQUIRED MATERIALS
Hardware

● Tiva TM4C123GH6PM Launchpad
● LP3943 LED array modules (that are already)

integrated to your daughterboard
● Sensors Booster Pack
● Laptop workstation with CCS setup

Software
● TivaWare and Board Support Package (BSP)
● Skeleton code provided for Lab 3

Documentations
● TM4C123GH6PM manual and datasheet
● LP3943 manual and datasheet
● Sensors Booster Pack datasheet
● Some of the Lecture 5 contents
● Feel free to use books or browse the internet!

IN-LAB REQUIREMENTS
Lab 3 spans weeks 6-7. The demo is due in week 7;
we will not grade you till then, but we expect you to
complete Part A-B by week 6 and Part B-C by week 7.

PRE-LAB QUESTIONS
● What is a jitter? Can you calculate the jitter for

periodic thread 0, and background thread 1
and 2 (when you are done implementing)?

● What are the differences between: a periodic
vs an aperiodic vs a sporadic process?

Part A.1: Improved Semaphores, Blocking, & Yielding

In Lab-2, you implemented a spinlock semaphore
check to synchronize threads and provide exclusive
access to peripherals. However, this approach wastes
CPU time by continuously checking a flag, where we
could be running another thread in the meantime until
the semaphore becomes available. Now, you will
update the semaphore library components to use
blocking to improve CPU utilization.

You can follow the these steps for this part:
● Begin by modifying the Thread Control Block

(TCB) structure to include a pointer to a
blocked semaphore. This semaphore will
either contain a 0 (not blocked), or the
semaphore that the thread is currently waiting
on. The definitions are already created for you
(see G8RTOS_Lab3/G8RTOS_Structures.h).

● Next, modify the semaphore library so that we
are no longer polling the semaphore in the
semaphore wait (G8RTOS_WaitSemaphore)
function. If the semaphore is not available, the
blocked semaphore for that thread should be
initialized; then yield control to allow another
thread to run in the meantime.

● For the G8RTOS_SignalSemaphore function,
you will add a process that will go through the
linked list of TCBs and unblock the first thread
that is blocked on that semaphore. Note: that
this process should only be executed if the
semaphore value is less than or equal to zero,
signifying that a thread has been waiting on
that semaphore to be released.

The last thing you need to modify is the G8RTOS
scheduler. It must verify that the next TCB is not
currently blocked. If it is blocked, keep going through
the linked list until a thread that is not blocked is
found. Note: It is important, as the programmer, to
ensure that a deadlock does not occur, in which case
thread A is waiting on a semaphore to be released by
thread B, but thread B is waiting on a semaphore to
be released by thread A, and neither thread will be
able to continue running.

Part A.2: Sleeping

In microprocessors, you may have used empty loops
to serve as a simple delay or for some other purpose.
Alternatively, a better solution is to use a timer to
perform such a task to increase the accuracy of the
delay. However, in a multithreaded system, CPU time
can’t be evenly distributed by using this method.

To solve this problem, you will incorporate the
sleeping feature; that is, when a thread needs to wait
for a prescribed amount of time, other threads should
be able to run in the meantime. It is important to note
that sleeping is an appropriate solution when the
accuracy of time is not important, but CPU usage is.
When CPU usage and timing accuracy are important,
periodic threads are more appropriate.

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 1



Moreover, the thread status must have a way to keep
track of sleep duration and its sleep status. Since the
SysTick runs at a rate of 1ms, this variable should be
in terms of milliseconds so that it can be easily
handled within the SysTick handler. Note: that this
means a thread can sleep for a minimum of 1ms, with
increments of 1ms. Check and use the sleep function
implemented for you in the scheduler.

Lastly, you need to make sure that sleeping threads
will be checked in the scheduler just like blocked
threads. That is, instead of just running the next
thread (as in Lab-2), we will run the next thread in the
linked list that is neither sleeping nor blocked.

Part B.1: Periodic Event Threads

As mentioned earlier, periodic threads are useful
when CPU usage and timing accuracy is of great
importance to the user. A periodic event will consist of
a doubly linked list with the following parameters:

● Function pointer to periodic event handler
● Period and execution time
● Pointer to the previous periodic event
● Pointer to the next periodic event

See the definition of ptcb_t (Periodic Thread Control
Block) in the G8RTOS_Structure.

The maximum number of periodic events should be
defined by the OS (allow up to 6 periodic events);
however, it is the user’s job to add a periodic event to
the linked list. Therefore, much like adding a regular
thread, you will have a function that will initialize a new
periodic event as well as handle the doubly linked list.
In the scheduler, you will need to implement a function
named G8RTOS_AddPeriodicEvent, which should be
operationally very similar to the G8RTOS_AddThread
function you implemented in Lab-2.

Moreover, within the scheduler, you will check every
periodic event’s execution time and run the thread
after the amount of prescribed time has passed. Note:
if two or more threads have a period with common
multiples of each other, one way to avoid running
multiple events within the same SysTick interrupt is
to give each event a different initial value for the
execution time to stagger their run times.

Part B.2: FIFOs

A FIFO (First In, First Out) data structure can be used
as a buffer for asynchronous communication between
threads. Notice the new library in the G8RTOS folder
(named IPC.c and IPC.h); with three functions for:

● Initializing the buffer (G8RTOS_InitFIFO),
● Reading from buffer (ReadFIFO), and
● Writing to the bugger (WriteFIFO).

Note: you need to implement a circular buffer, so you
must wrap the head and tail pointers (if necessary)
reading from or writing to the FIFO buffer.

G8RTOS_InitFIFO: When initializing a FIFO, the
function should take in a uint32_t, which is the index
of the array of FIFOs provided by the G8RTOS. We set
the max number of FIFOS as 4 and the max buffer size
to 16. The FIFO structure should contain the following
(see their definitions in ​​G8RTOS_IPC.c.):

● Buffer: int32_t array
● Head: int32_t pointer
● Tail: int32_t Pointer
● Lost Data count: uint32_t
● Current size: semaphore
● Mutex: semaphore

In addition to checking the boundary conditions, you
should also Initialize the buffer pointers as well as the
semaphores. Also make sure the current size starts at 0
and mutex starts at 1

ReadFIFO: The read function will take in an integer
value that will determine which FIFO is to read from.
Before reading from the FIFO, we must wait for the
mutex semaphore in case the FIFO was in the middle
of being read from another thread, and then wait for the
current size semaphore to make sure there is data to
be read. Because the current size and mutex are
semaphores, a thread can become blocked waiting for
the FIFO to obtain data. Once we have read from the
FIFO and updated the head pointer, we can signal the
mutex semaphore and return the data.

WriteFIFO: The write function will also take in an
integer that chooses which FIFO will be written to, as
well the actual data to be written. The current size
semaphore must be compared to the size of the FIFO
minus one, in case an interrupt has happened between
reading the FIFO and incrementing its head pointer.
Should this condition hold true, we should increment
the number of lost data and return an error that the
FIFO is full. Otherwise, write the data to the FIFO,
update the tail pointer, signal the current size
semaphore, and return that no error has occurred.

Part C: Implement Threads

BackGroundThread0:
● Empty default thread; does nothing.

BackGroundThread1:
● Read the BME280’s temperature sensor.
● Sends data to temperature FIFO.
● Sleep for 500ms.

Periodic Thread 0 (Period: 100ms):
● Read X-coordinate from the joystick.
● Write data to Joystick FIFO.

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 2



Periodic Thread 1 (Period: 100ms):
● Prints out the decayed average value of the

joystick’s X-coordinate in a UART console.
● Prints out the temperature value in a UART

console (in degrees Fahrenheit).

BackGroundThread2:
● Read the light sensor.
● Send data to light FIFO.
● Sleep for 200ms.

BackGroundThread3:
● Read temperature FIFO.
● Output data to Red/Blue LEDs as shown in

the following figure. Feel free to adjust or
normalize the temperature values if needed.

BackGroundThread4:
● Read the joystick's X-coordinate.
● Calculate decayed average: to calculate a 50%

decaying average, you will have an int32_t
variable (eg, named Avg). After getting a new
value, Avg will be updated as

Avg = (Avg + value) >> 1.

● Output data to Green LEDs as shown in the
following figure.

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 3


