
EEL 4745C: Microprocessor Applications 2
Lab ④: G8RTOS Dynamic Threads and LCD Interfacing

Fall 2022

OBJECTIVES
In this lab, we will:

● Write a library with extensive functions that
allows interfacing a touchscreen color LCD.

● Incorporate dynamic and aperiodic event
threads in our RTOS.

● Convert our round-robin scheduler into a
priority scheduler.

REQUIRED MATERIALS
Hardware

● Tiva TM4C123GH6PM Launchpad
● LP3943 LED array modules (that are already)

integrated to your daughterboard
● The ILI9341 LCD display provided to you.
● Laptop workstation with CCS setup

Software
● TivaWare and Board Support Package (BSP)
● Skeleton code provided for Lab 4

Documentations
● TM4C123GH6PM manual and datasheet
● LCD datasheets (same family)

○ ILI9341, ILI9325, TFT Manual
● LP3943 manual and datasheet
● Sensors Booster Pack datasheet
● Feel free to use books or browse the internet!

IN-LAB REQUIREMENTS
Lab 4 starts the week of (Oct 17-21); demos are due
the following week (Oct 24-28). Late demos are
effective 1 week afterwards with a 10% penalty. The
solutions will be uploaded on Nov 4th.

PRE-LAB QUESTIONS
● What is SPI communication? When do you

need to or should use it?
● What are the similarities/differences between:

a periodic vs a dynamic thread?
● Think about the how to do these in your LCD:

○ Draw a line/rectangle/score-board.
○ Move an object with touch.

Part A: Interfacing a touchscreen color LCD

For LCD interfacing, we have provided some driver
functionalities: please thoroughly go through the
ILI9341_Lib.c & ILI9341_Lib.h files in the
Board Support package (BSP). Some functions are
already implemented for your reference, and you will
need to complete the rest.

Some of the important functions that are already
implemented are as follows:

LCD_Init()
The provided LCD initialization function does most of
the work for you, however you will need to initialize the
SPI peripheral yourselves. Use no pre-scaler for
maximum performance and enable the interrupt for
the touchscreen if the user indicates to do so.

PutChar()
Outputs a character to the display at some coordinate.
This utilizes the ASCII library provided to you.

LCD_Text()
Outputs a string to the display at some coordinate

LCD_WriteIndex()
Sets the address for the register we want to write to.

LCD_WriteData()
Writes 16-bit data to the register that is specified by
the LCD_WriteIndex() function

LCD_Write_Data_Only()
Sends only data (useful for continuous transmission)

TP_ReadXY()
Reads the tappedX and Y coordinates from the LCD.

Functions you will need to implement

LCD_DrawRectangle()
Draw a rectangle with a specified color.

LCD_Clear()
Clear the screen with a specified color

LCD_SetPoint()
Draw one pixel with specified coordinate and color.

LCD_WriteReg()
Write data to the specified register.

LCD_SetCursor()
Place the cursor at the specified coordinate.

LCD_PushColor()
Set a pixel on the LCD to a specific color.

LCD_SetAddress()
Set the draw area of the LCD; please look into the
manual/datasheet to correctly implement this.

** Feel free to add any other functions if/as needed.

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 1

https://www.digikey.com/htmldatasheets/production/1640716/0/0/1/ili9341-datasheet.html
https://cdn-shop.adafruit.com/datasheets/ILI9325.pdf
https://web.mit.edu/6.115/www/document/TFT_User_Manual.pdf


Part B.1: Convert Round-Robin Scheduler to Priority
Scheduler

Instead of using a round-robin scheduler, you will
introduce priority to our RTOS, where every thread
has its own priority. You might need something like a
background thread that always needs to execute as
soon as possible. For example, later in this project,
after tapping the LCD screen, a background thread
might need to be executed first to update the global
status as soon as possible. Also, you might want to
lower the idle thread’s execution frequency as much
as possible too. You can accomplish all of this with
different thread priorities.

Hints: You may follow these steps:
● Maintain a variable currentMaxPriority

to store the priority level of the current running
thread. Initialize currentMaxPriority to
256 (lowest priority); remember that the
highest priority is 0.

● While scheduling another thread, check if its
priority is less than currentMaxPriority.

● Lastly, modify G8RTOS_Launch to choose the
thread with the highest priority to run first.

Part B.2: Dynamic Thread Creation and Destruction

Currently, we cannot add or kill threads once your OS
has been launched. In order to accomplish this, we
need to modify the TCB structure and also the
G8RTOS_AddThread function: add a function to attain
a thread’s ID, and add two new functions to the
scheduler:

● G8RTOS_KillSelf() and
● G8RTOS_KillThread().

Hints:
It is helpful to use the following:

● A boolean (say isAlive) to keep track of the
status: alive or dead in the TCB.

● An integer (say threadID) and character
array (say threadName): will be convenient
to keep track of threads inside of the variable
explorer and overall debugging process.

So basically,
● The isAlive bit will indicate whether that

thread is alive, or if it’s been killed and no
longer in the linked list of active threads.

● The threadID will allow every thread to
have its unique ID so that the user can
request the ID of the thread to be killed.

Modifications to G8RTOS_AddThread()
The AddThread function will now take in not only a
thread’s priority, but also its name to initialize. Since we
want to be able to add a thread while our OS is running,
we will need to enter a critical section and exit it prior to
returning. Make sure that all threadIDs are unique
and set the isAlive bit to true initially.

G8RTOS_KillThread(threadId)
This function will take in a threadId, indicating the
thread to kill. Hint: Think about how to take care of the
boundary conditions (if no threads exist with that ID,
only one thread running, etc.). Also think about which
operations should be in the critical section.

G8RTOS_KillSelf()
Very similar; this function will simply kill the currently
running thread.

Part B.3: Aperiodic Event Threads

Whenever you tap (use the LCD touchpad), we need to
run an ISR is essentially an aperiodic event thread. To
do this, we will need to initialize the appropriate NVIC
registers accordingly. To add an aperiodic event, we
provide it with a function pointer that will serve as the
ISR, a priority, and the IRQ interrupt number:

● G8RTOS_AddAPeriodicEvent(
void (*AthreadToAdd)(void),
uint8_t priority, int32_t IRQn)

Make sure to verify that IRQn is less than the last
exception (155) and greater than last acceptable user
interrupt (0), and verify priority is not greater than 6, the
greatest user priority number.

Note: To relocate an ISRs interrupt vector, the interrupt
vector table must be relocated to SRAM. Depending on
the compiler, this may or may not be done
automatically. Therefore, to be compliant with all
compilers, you want to relocate the interrupts vector to
SRAM yourselves. You can do this in G8RTOS_Init().
The following code will relocate the vector table to
address 0x20000000.

uint32_t newVTORTable = 0x20000000;
uint32_t * newTable = (uint32_t
*)newVTORTable;
uint32_t * oldTable = (uint32_t *)0;

for (int i = 0; i < 155; i++)
{

newTable[i] = oldTable[i];
}
HWREG(NVIC_VTABLE) = newVTORTable;

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 2



General description of expected final product

● Program will launch with a blank screen waiting for a tap.
● Once touched, a ball (4x4 rectangle in our case) should be drawn on the screen with a random color;

you may use the time.h library for randomness.
● Depending on the accelerometer X and Y values, the ball will change directions.
● To make it more interesting, every new ball created should have a random speed (just a scaling factor

for its velocity).
● If any ball is touched, it should be deleted.
● There will be a maximum number of 20 balls allowed at any point of time.
● If a ball hits an edge, it should wrap around to the other side.

Initially, you will have the following threads active:
● Read Accelerometer: background thread
● LCD tap: aperiodic thread
● Wait for tap: background thread

○ Waits for a flag from ISR, reads touch coordinates, and then determines whether to delete or
add a ball.

○ If a ball is to be created: write the coordinates to a FIFO and then create a Ball thread.
○ If a ball is to be deleted: wait for any semaphores the ball thread might be using and call

G8RTOS_KillThread with the ball’s threadID.
○ Delay for 500ms (try better values) to account for screen bouncing before checking the touch

flag again.
● Idle thread: lowest priority thread
● Ball thread: background thread

○ Finds a dead ball and makes it alive; reads FIFO and initializes coordinates accordingly
○ Get threadID and store it; it is better if you use a struct to hold all information about a ball

■ Color, ID, position, velocity, etc.
○ Within while(1):

■ Move its position depending on velocity & acceleration
■ Then update the ball on screen and sleep for ~30ms (try better values).

>> See a sample demo video: https://youtube.com/shorts/umWUxbx3qZc

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 3

https://youtube.com/shorts/umWUxbx3qZc?feature=share

