
EEL 4745C: Microprocessor Applications 2
Lab 5: AI with RTOS

Fall 2022

OBJECTIVES
In this lab, we will interface with a Beagle and set up a
simple AI pipeline on it. In particular, We will
communicate to a light Python-OpenCV pipeline for
real-time face detection: on image data, webcam feed,
and video files.

REQUIRED MATERIALS
Hardware

● Beaglebone Black and SD card
● Laptop workstation with Python and OpenCV

Software
● Python and OpenCV
● Skeleton code provided for Lab 5

Documentations
● https://beagleboard.org/getting-started
● https://docs.opencv.org/4.x/d6/d00/tutorial_py

_root.html
● https://docs.opencv.org/3.4/db/d28/tutorial_ca

scade_classifier.html
● https://towardsdatascience.com/face-detectio

n-in-2-minutes-using-opencv-python-90f89d7c
0f81

● Lecture-8 contents

IN-LAB REQUIREMENTS
Lab-5 officially starts on the week of (10/31-11/04).
Since we pushed back the previous lab by one week,
all lab-5 demos are also pushed back (without late
penalty); the demos are due on 11/14-11/18.

PRE-LAB QUESTIONS
● Your Beagle has on-board memory; but we

are using a SD card as well. Why/when do we
use the on-device memory over SD card?

● Install Python and OpenCV libraries on your
laptop or workstation. Practice:

○ How to read/write an image.
○ How to draw shapes (circles,

rectangles, texts) on an image.

Part A: Interface & communicate with a Beagle

First, we will learn how to set up the software image
on the Beagle. We will need a host laptop/computer to
connect to the Beagle, then SSH into it, and install the
OS components. Please follow the steps outlined at
https://beagleboard.org/getting-started. We have listed
the simplified steps for both Windows and Mac host
machines in Lecture 8.

Specifically, you will follow the following steps:
1. Download Putty
2. Download Beagle software image to SD card
3. Download USB Driver
4. Power On and Boot the Beagle
5. SSH Into the Beagle

For MacOS hosts, you will need to do additional steps:
6. Update USB CDC Ethernet to use NCM
7. Connect your Beagle with Mac PC

After that, you will be able to connect Beagle to the
internet and set up any AI/AIoT pipelines that you
need for your work!

If you have used Beagles or Raspberry Pis before,
you probably know these basic steps already. If not,
please follow the steps outlined in Lecture 8 and
consult with the TAs if you get stuck with any bugs!

Part B: Setup Python-OpenCV pipeline

Now install Python and OpenCV libraries on Beagle.

>> Get Python (3.8 or 3.9):
$ sudo apt update
$ sudo apt upgrade
$ sudo apt install python3

>> Verify the installation:
$ python3 --version

>> Get OpenCV 3.2.x:
$ sudo apt install python3-opencv

>> Verify the installation:
$ python3 -c "import cv2;

print(cv2.__version__)"

Part C: On-Board Face detection

We will try to run the standard face detection module
of OpenCV on the Beagle. Learning the OpenCV
library is not the purpose of this class, and it takes
some time. Nevertheless, we will learn the basics of
image processing and simple classifiers and object
detection pipelines.

In particular, we will learn the basics of face detection
using the Haar Feature-based Cascade Classifiers.
See the following tutorials:

● https://docs.opencv.org/3.4/db/d28/tutorial_ca
scade_classifier.html

● https://towardsdatascience.com/face-detectio
n-in-2-minutes-using-opencv-python-90f89d7c
0f81

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 1

https://beagleboard.org/getting-started
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://towardsdatascience.com/face-detection-in-2-minutes-using-opencv-python-90f89d7c0f81
https://towardsdatascience.com/face-detection-in-2-minutes-using-opencv-python-90f89d7c0f81
https://towardsdatascience.com/face-detection-in-2-minutes-using-opencv-python-90f89d7c0f81
https://beagleboard.org/getting-started
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://towardsdatascience.com/face-detection-in-2-minutes-using-opencv-python-90f89d7c0f81
https://towardsdatascience.com/face-detection-in-2-minutes-using-opencv-python-90f89d7c0f81
https://towardsdatascience.com/face-detection-in-2-minutes-using-opencv-python-90f89d7c0f81

The steps are the following:
● Read an image file given the path: image = cv2.imread(img_path)

○ image is now a numpy array of size WxHx1 for grayscale images or WxHx3 for RGB images
○ Note: OpenCV reads images in BGR format.

● Load the cascade classifier model: faceCascade = cv2.CascadeClassifier(cascade_path)
● Detect faces: faces = face_detect(image, faceCascade)
● Detect bounding boxes on the image: image = draw_face_boxes(image, faces)
● Write the output image as a file: cv2.imwrite(“output.jpg”, image)
● The face_detect and draw_face_boxes functions are given below.

Your tasks:
● Get familiar with OpenCV functionalities on your laptop, run the face_detect_img.py and match

the output. Try different images and see when the output breaks.
● Also fun the face_detect_webcam.py and see if you can detect your face in real time!
● Then copy over the provided code and data to your Beagle.
● The face_detect_webcam.py should run fine and generate the right output.
● Your task is to complete the face_detect_video.py file so that

○ It takes input a path for a video file
○ Reads the video file frame by frame
○ Detects faces in each frame, and draws bounding boxes if any faces are found
○ The final output should be a video with all the face boxes
○ Check: https://youtu.be/prSROEIjuaY

● Bonus points (1-2):
○ Can you implement some tracking features? (By Kalman filtering or any other filtering approach)

def face_detect(image, faceCascade):
if len(image.shape)==3:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:

gray = image

Detect faces in the image
faces = faceCascade.detectMultiScale(

gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE

)
return faces

def draw_face_boxes(image, faces):
if faces is None:

return image
for (x, y, w, h) in faces:

cv2.rectangle(image,
(x, y), (x+w, y+h), (0, 255, 0), 2

)
return image

Microprocessor Applications 2 - EEL 4745C (Fall 2022) By Md Jahidul Islam Page 2

https://youtu.be/prSROEIjuaY

